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PREFACE

This book is the first of a series of monographs on
mathematical subjects which are to be published under
the auspices of the Mathematical Association of America)
and whose publication has been made possible By a
very gemerous gift to the Association by MrgsMary
Hegeler Carus as trustee for the Edward C2yHegeler
Trust Fund. The purpose of the monograpﬁs\is to make
the essential features of various matheniatical theoties

‘accessible and attractive to as man ‘persons as possible

who have an interest in mathemafies but who may not -
be specialists in the particulag théory presented, a pur-
pose which Mrs. Carus has weory appropriately described
to be “ the diffusion of mathématical and formal thought
as contributory to exact knowledge and clear thinking,
not only for mathematicians and teachers of mathe-
matics but alﬁ'\xf@f‘ other scientists and the public at
large.” N . :
The atfainment of this end will not always be easy
for aq&ior’s who have long specialized in unraveling the
intricacies of the domains in which their principal activ-
jties' lie, and the clientele of readers which they may

~f1:'easonably hope to interest will vary greatly with the
' subjects presented. It would obviously be unwise to-

regard this first attempt as in any final sense a model
for the many monographs which it is hoped will follow.
Later authors will doubtless profit much by the experi-
ences of those who have written before, but varieties of
subjects and types of readers to be addressed are likely

3
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to require an equally large variety of methods of presen-
tation. It is possible that some monographs will be
entirely ‘descriptive or historical in character, others

. devoted to the treatment in detail of special mathemati-

cal questions which can be approached without elaborate
prerequisite study, ‘and still others of types not y&t\
devised but which are cértain to be suggested as the serics
progresses. One can readily foresee the beneﬁcza] sinflu-
ence which the monographs will have in enco{ragrng and

' developing types of descriptive mathematical writing

suited to the very laudable purposes iot\whlch the series
has been inaygurated. R
. The theory to which the présent monograph is
devoted, the calculus of varlatlons is one whose develop-
ment from the beginning hag been interlaced with that of
the differential -and 11;1chral calculus, Without any
knowledge of the calculits one can readily understand at
least the geometricahor mechanical statements of many
of the problemg®el the calculus of variations and the
character of, their solutions, as. an examination of the
chapters Eo follow will show. Thus if two points net in
the sapievertical line are given we may ask for the curve
joiming them down which a marble starting with a given
fal velocity will roll from one point to the other in the
The solution is a piece of an inverted

) cycloid, and a cycloid is the curve described by a point

on the rim of a wheel as thé wheel rolis along the ground.
Or if two points above a horizontal x-axis are given we
may seek to find the curve which joins them and which

when rotated around the x-axis generates a surface of

revolution of minimum area. The solution curve will

have sometimes ope and sometimes the other of two
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forms. The first of these is the broken line consisting
of the two perpendiculars from the points to the z-axis
and the portion of the axis between them, in which case
the minimum surface consists of two circular disks.. The
second is an arc of a catenary, and the form of a catenary {
is that which a chain naturally takes when suspendeq
from two pegs. The surface generated in this latterlease
is the capstan-shaped surface assumed by a saap fitm
suspended between two wire circles havmg 42 common
axis. m\

The discovery and justification of thevresults which
have just been described, apart from{bhelr simple state-
ment, do require, however, acquaintante with the prin-
ciples of the calculus, and ing the foliowing pages it is
assumed that the reader. has»such an acquaintance. This
should not deter others Wha may be interested from exam-
ining the introductiond) %o the various chapters and the
italicized theorems{throughout the book. many of which
should be perf,&:i}f intelligible to everyone. The only
place where fesults not usually deduced in the ordinary
calculus course are used is in the last chapter., where
gome p‘rbperties of differential equations are required
w th]:;l\hd.VC alrcady been clearly illustrated in the three
\ccedmg chapters, and which are described in detail
m the text. :

In selecting material for presentdt]on it seemed -
desirable to begin by studying special problems rather
than the general theory. The first chapter of the hook
describes the historical sctting out of which the theory
ol the calculus of variations grew. and the character of
some of the ;qmp]er problems. The next three chapters
are devoted to the development in detail of the.known
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results:. for fhreé; specia_ﬂ .prolﬁ[em; which illustrate in
excellent fashion the essential characteristics of the gen-

- eral theory contained in Chapter V with which the book

concludes.  The author was influenced. in this selection
by several considerations. In the first place the theory

" of ‘the special -problems hére presented requires only (%),

analysis of a concrete sort in which one is much aided by

intuition: while accumulating experiences which asgist

effectively in understanding later the notions ©f>the

' general theory. In the second place the theoginof these

problems, though - well known, is scattered\In various
places in treatises and memoirs on the g:a’l‘&\ﬂus of varia-

- tiond, and the presentation of it in-celletted form should

therefore be useful as well as institotive. Finally it is

. a fact t_hat the mod_érn theory,gf'ihe calculus of varia-’
- tions has been presented forfle most part in elaborate
- mathematical treatises ang® is not readily accessible

except to the spec._ialist;" The elementary discussions of
the theory, in the lafger more general treatises on analy-

~ sis and also in geﬁu}ate form, usually lay their emphasis

~ upon the dedniction of the differential equations of the

minimizing“¢urves for various types of problems, and
relati\{cl}i\}fttle upon other aspects of the theory. It is
doub‘{;[ess partly for.this reason that in-applied mathe-
ma@ics much more use has hitherto been made of these

{differential equations and their solutions than of the
) Turther properties of minimizing’ curves, though it is
- well known that in many cases these further properties
~ are closely related to interesting conditions for stability

in associated problems of mechanics.
* Such are the reasons why ‘it seemed desirable to the

~ #uthor =to present in this book the theory of special
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problems with some completeness, even if limitations of
spacc should permit only a few of them to be discussed.
It must be admitted that in the literature of the cal-
culus of variations there are not many particular cases
to which the general theory has been thoroughly

applied. The assembling of as many such problems as® N

possible and the completion of others would be a wolsk
of great usefulness and interest. \

At the end of Chapter Visa list of the books \BT1 the
calculus of variations with a few other reﬁc\ences of
importance for the topics considered in thevYext. The
notes, indicated serially in the text by supén-.cnpts, follow

e\

this list of refercnces. 2N\
. s AY  G. A, Briss
Tae UNIVERsITY oF Cmicaco &
October, 1924 &N
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CHAPTER I

TYPICAL PROBLEMS OF THE CALCULUS Of
VARIATIONS

1. The invention of the calculus. When the student of
mathematics pauses to look back upon the achieveménts
of mathematicians of the past he must be hnpress\ed"w.ith
the fact that the seventeenth century was a mast impor-
{ant epoch in the development of modern miathematical
analysis, since to the mathematicians of ‘that period we
owe the invention of the differentialand integral cal-
culus. At first the calculus theoryyih deed at that time
it could be called such,.consis‘ge& of isolated and some-

- what crude methods of sgly’ihg special problems. In
the domain of what we,;ioix? call the integral calculus,
for example, an Ttalian ‘mathematician named Cavalieri
{1398-1647) devised  early "in the seventeenth century a
sumimation pr e‘{s; Jcalled the method of indivisibles, by
means of whieh he was able to calculate correctly marny
arcas and Gdltmes. His justification of his device was
50 incgmiplete logically, however, that even in those
rel ti?é‘l‘y uncritical times his contemporaries were
déubtiul and dissatisfied. Somewhat later two I'rench -

,.\’fﬁial;hema.ticia,ns, Roberval (1602-75) and Pascal (1623-

\“; +’62), and the Englishman Wallis (1616-1703), improved

the method and made it more like the summation pro-
cesses of the integral calculus of today. In the casc of

the differential calculus we find that before the final quar-

ter of the seventeenth century Descartes {1596~-1650),

Roberval, and Fermat (1601-63) in France, and Barrow

T



2 .  TYPICAL PROBLEMS

(1630-77) in England, all had methods of constructing
tangents t¢ curves which were pointing the way toward
the solution of the fundamental problem of the differ-
ential calculus as we formulate it today, namely, that of
determining the slope of the tangent at a point of a curve,
At this important stage there appeared upon the’
'scene two men of extraordinary mathematical indight,
‘Newton (1642-1727) in England, and Leibniz “(1646-
1716} in Germany, who from two somewhat( different
. standpoints carried forward the theory anfl Applications
of the calculus with great strides. Ib'is a mistake,
though we often find it an easy C9Q'eMEnce, to regard
these two great thinkers as havinganvented the calculus
oﬁt_ of a clear sky. Newton Way in fact a close student
of the work of Wallis, aiid @ pupil of Barrow whom he
succeeded as professor (of ‘mathematics at Cambridge,
“while we know that.Létbniz visited Paris and London
early in his career, and that he there became acquainted
with the most@dvanced mathematics'of his day. Noone
could succedsfully contest the fact, however, that these
.. two men Were the most able spokesmen and investigators
of the seventeenth-century school of mathematicians to
VQM“:h’ we owe the gradual evolution of the calculus.
O In spite of the great abilities of Newton and Leib-

" alniz the underlying ‘principles of the cajculus as exposed

by them seem to us from our modern viewpoint, as indeed
to their contemporaries and immediate successors, some-
what vague and confusing. The dificulty lies in the

lack of clearness at that early time, and for more than a

century thereafter. in the conceptions of infinitesimals
 and lmits wpon w

- hich the calculus rests, a- difficulty
which has been overcome only by the systematic study
" . . h‘-—-—..\--—-_ ~ a4
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of the theory of limits inaugurated by Cauchy (1789~
1857) and continued by Weierstrass (1815-97), Riemann
(1826-66), and_ ma_y_gtherb

2. Maxima and minimae. Among the earliest prob-
lems which attracted the attention of students of the
calculus were those which require the determination
of a maximum or a minimum. Fermat had devlsed a5/
early as 1629 a procedure applicable to such problems
depending upon principles which in essence, thoygh ot in
notation, were those of the modern differential.Calculus.
Somewhat nearer to the type of reasoniigipow in com-
mon use are the methods which ’\Ie}m{c?n and Leibniz
applied to the determination of ma¥ima and minima,
methods which are also chara(,tanstlc of their two con-
ceptions of the fundamental p;mmples of the differential
calculus. Newton argued,n a paper written in 1671
but first published in 1?36 that a variable_is increasing
when its rate of change 15 positive, and decreasing when
1ts rate is negatwe,\so that at a_maxxmlgl_ or a_minimum
The rate must b zéro. Leibniz, on the other hand, in 2
paper whichche published in 1684, conceived the problem

geometricaﬂy“. At a_maximym or a minimum point of
a curyethe tangent must be horizontal and the slope

w
{ At the present time we know we]l that from a purely

N\ Mhalytical standpoint these two methods are identical

The derivative
(I) f"(x) lim f(x-}-.’.\x) '"f(x)

Lhren Ax

of a function f{x) represents both the rate of change of
f{x) with respect to x and the slope of the tangent at a

N\



4 . TYPICAL PROBLEMS

point on the graph of f(x). For in the first place the
fraction in the sccond member of equation (1} is the
average rate of change of f(x) with respect to x on the
interval from x to x+Ax, and its limit as the interval is
shortened is therefore rightly called the rate of change

" of f(x) at the initjal valgg\»
Q/ x of the interval. Ingthe”

second place this samé gfio-
y=flxy : tient is the slopp? of’ the

NP ~ f(;'c-|-,£x] f;eca}lt.PQ inFigure 1, and
) its limit is the-Slope of the

tangent abP. Thus by the

reasoning of either Newton
" or Leibnitz we know that
the maxima and minim~ of f(;cj;occur at the values of x
where the derivative \x),'.ig:'zdro_

1t wras not asy for B seventeenthcontury mathe-
maticial to deduce this'simple criterion that the deriva-
tive f'(x) must vahish at a maximum or & minimum of
f(®). e was immersed in the study of special problems
_rather't_hg:n general theories, and had no well-established
limiting“processes or. calculus notations to assist him:

It W@\s’;}fiﬂ_ more difficult for him to advance one step
fakther to the realization of the significance of the second

z - EHAT
Fre. 1 -

N

«Jerivative f7(x) in distinguishing between maximum and =

\ \ minimum values. Leibniz in his paper of 1684 was the

first to give the eriterion. In present-day parlance we
say that f'(a) =0, f"(2)20 are necessary conditions for
tPe value fyg}_ to be a minimum, while the conditions
i @Mfﬁcient to insure a rﬁinjugum.

5ense,
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Tt will be noted that the conditions just slated as
necessary for a minimum are not identical with those
which are sufficient. We shall see in Chapter V thata
similar undesirable and much more baffiing discrepancy
occurs in the calculus of variations. For the stmple
problem of minimizing a function f{x) the doubtluh,
intermediate case when f'(a) and f'(a) are both ,aeto-
was discussed by Maclaurin (1698-1746) who showed How

higher derivatives may be used to obtain crijesla which
are both necessary and ient. For_the calculus of
variations_the corresponding prdMQm_.Qﬁ:CrS: great diffi-
culty and has never been completelysbly ed.

"3 Two problems of the calculaes\of rariations which
may be simply formulated. Wiieh "one realizes the diffi-
culty with which the late severficenth-century school of
mathematicians establishddbthetirst fundamental prin-
ciples of tbe calculus angd their applications to such ele-
mentary problems i Mnaxima and minima as the one
which has just bgen described, it is remarkable that
they shouldyhave conceived or attempted to solve with
their relatively crude analytical machinery the far more
difficult iﬁaxinium and minimum problems of the calculus
of mafidtions which were at first proposed. It is an

’i&’sfésting fact that thesc early problems were not by
‘mhy means thc least complicated ones of the calculus

of variations, and we shall do well therefore to mtroduce
ourselves to the subject by looking first at two others
which are easier to describe to one who has not already
amused himself by browsing in this domain of mathe-
mafics. )

The simplest of ali the problems of the calculus of
variations is doubtless that of determining the shortest

"\
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given points are

Sor which the corres
“ In the shortest distance problem t

- N

6. - . TYPICAL PROBLEMS

arc jbilﬁhg-t;iﬁo given points. The co-erdinates of these

poings will always be dendted by (a1, 31) and (xs, v2) :d.nd
we may designate the points themselves when convenient
simply by the numerals 1 and 2. If the equation of anarc
is taken in the form

y=y(r) (@Sr<xm) O

. 28
then the conditions that it shall pass through the, two

(2) . Y@=y, : W) =ps, 2O

and we know from the calculus that,’thﬁ‘leng.th of the

arc is given by the integral A\
- £ - s : )
I=J- Viiky'*dz,
where in the evaluation oftthe integral ¢’ is to be replaced

by the derivative y'(£hof the function y(x) defining the
arc. There is an/nfinity of curves y=y(x) joining the

-points 1 and 2.%Fhe problem of finding the shortest one

s equivalent analytically to that of finding in the class
of functipus(x) satisfying the conditions (2) one which
makes/Phe integral I 3 minimum. .

Inthe more elementary minimum problem of Section
2@bove a function f{x) is given and a value ¥ =g Is sought
onding value f(a) is a minimum.
he integral I takes
the place of f(x), and instead of 4 value #=a making f(a)
4 minimum we seek to find an arc By joining the points
1 and 2 which shajl minimize . The analogy between
the two problems is more perspicuous if we think of the

length Iasa function 1 (_En) whose value is uniquely

Q.



THE SOAP FILM PROBLEM 7

determined when the arc Ep» is given, just as fix) in the
former case was a function of the yariable x.

There is a second problem of the calculus of varia-
tions, ol a geometrical-mechanical type, which the
principles of the calculus readily cnable us to express also
in analytic form. When & wire circle is dipped in & s0apa
solution and withdrawn, a circular disk of soap film boqn\ﬂ&.\
ed by the circle is formed. Tf a second smaller cigcle’is
made to touch this disk and then moved away:‘ﬁié' two
circles will be joined by a sur- R4
face of film which is a surface 1 N4
of revolution in the particular
case when the circles are par-
allel and have their centers on
the same axis perpendicular tow

' their planes. The form of this
surface is shown in Figdre 2.
Tt js provable by sHle prin-
ciples of mechanis) as one
may readily sghm\isé intuitive-
ly from the,elbstic properties
of o soaphfilm, that the sur-
{ace’ai;r%“volution so formed must be one of minimum
an:e%, nd the problem of determining the shape of the ilm

.ji’é,cqui\-"ai ent thercfore to that of determining such a mini-

~ *y mum surface of revolulion passing through two circles
N/ whose relative positions are supposed to be given as indi-
cated in the figure. :

In order to phrase this problem analytically let the
copymon axis of the two circles be taken as the x-axis,
and let the points where the circles intersect an xy-plane
through that axis be 1 and 2. Tf the meridian curve of
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the surface in the xy-plane has an equation ¥ =y(x).then
the caleulus formula for the area of the surface is 27
times the value of the integral

I f W s
. ” O

The problem of determining the form of the sogp) film
surface between the two circles is analyticallypthat of
finding in the class of arcs y=y(x) whose ends}\are at the
points 1 and 2 one which minimizes the lagtwritten inte-
gral . - O
4. The problem of Newton. Ipywds remarked above
that. the earliest problems of the daleulus of variations
were not by any means the simplest. In his Principia
(1686)' Newton states Wit.}nfqiit proof certain conditions
which must be satisfied by surface of revolution which
15 50 formed that it will\encounter a minimum resistance
when moved in the@irection of its axis through a resisting -

‘medium. A pditicular case of the problem of finding

such a surfade s the well-known one of determining the
form of aMgrdjectile which for a specified initial velocity
will g{\ﬁé ‘the longest range. In practical ballistics it
tufnSout that one of the most difficuls parts of the investi-

&ation of this question lies in the experimental determina-
< tion of the retardation law for badie

s moving in the air at
high rates of specd.  Newton assumed a rela{ively simple
law of resistance for bodies moving in a resisting medium
which does not agree well with our experience with bodies
moving in the air, but on the basis of which he was able
to find a condition characterizing the meridian curves
of the surfaces of revelution which encounter minimum

N
Oy -
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NEWTON'S PROBLEM g

resistance. Trom a letter written by Newton to Pro-
fessor David Gregory, probably in 1604, Bolza has
reconstructed in most interesting fashion the arguments
which Newton used in attaining his results.”

It is sufficient for the purposes of this introductory
chapter to say that when the surface is gencrated by,

rotating about the z-axis an arc with an equation of they

forma y=7y(z) the resistance experienced by the sur’f:a\ce
when moved in the direction of the x-axis willy“except
for a constant factor, be \\

EN yf\,fa 9
I=| “=—xdz.
L 20 00

$

Newton’s probleﬁl in analytica,l‘f(}r\l; is then that of

determining among all the arcs,y=y(x) joining two given
points i and 2 one which mgkéb"’this integral a minimum.
We could equally well pf\eburse ask to determine the
curve so that the resisfance should be a maximum, If
the law of resistancé of Newton is replaced by another
the methods wi 1@3 we now know of attacking the prob-
lem will stilldbe applicable, though the results may be
different, a§ anumber of writers have shown.

5. .’R?fe' brachistochrone problem. Newton’s problem,
publisied in the Principia in 1680, lay apparently unno-
ti€ad for more than a decade before a new interest aroused

,\fb’y a second and more [amous problem of the caleulus of
. variations caused it to be studied again It is not sur-

prising that this happened because Newton’s description
of his results is very informal and concise. He gave no
hint of a larger class of similar questions, and no sugges-
tion of a method of solution which might have been
applicable to such-a class. To discover the beginnings

Q!
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of active research in the calculus of variations we must
turn therefore to other writers. )

Tn the period which followed the discovery and publi-

" cation of the calculus methods of Newton and Leibnitz

" two of the most prominent and successiul rescarchers

- in the new analysis were the Swiss mathematicians James/\
Bernoulli __(}6544705), professor of mathematics at phi ™
University of Basle, and his brother Johr (166?-;1?‘4-‘8),
The ybunger brother was a student of the elder, and
among those students he was in later yeazs-by far the
most distinguished on account.of his varieahd success-

" ful researches. He studied with ]arp,@ﬁntil the year
1690 when he forsook Basle for trawel and the study of
mathematics in France, Shortly)iiter his return he
accepted in 1695 a professorship at the University of
Groningen, and in 1705, upsn the death of James Ber-
noulli, he returned to Baske'to spend the remainder of his
life as professor of mathematics in his native city.

In’the years jush preceding 1695 a rivalry sprang up
between the twabrothers the reason for which is not
weli'undersj:oéd. It was at times amusihgly undignified,
and frophtHe scientific standpoint unjustifiable, since
both brothers were with somewhat different tempera-
ments’remarkably able and worthy of respect. What-
(&¥ef may have been the cause of their dissension it is at

() any rate true that the friction between them gave an
| 3 unusual imipetus and zest to the beginnings of the cal-
culus of variations. In June, 1696, John Bernoulli
proposed his now famous brachistochrone problem, and
publicly incited the mathematicians of the world to give
it tl_le;ir consideration, according to a custom which was
cormon, at the time’ We kaow that the problem
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aroused great interest and that Newton, Leibniz, and
IHospital (1661-1704), besides the brothers Bernoutii,
found the correct solution.

The problem of the brachistochrone {(Bpaxtrros= -
shortest, xpoves=time) is that of determining a path
dewn which a particle
will fall from one given
point to another in the
shortest time. ~ Let the
y-axis lor convenicnce
be taken vertically

0] ¥

downward, as in Figure y N\
3, the two fixed points R}é 3
being 1 and 2. The ANV

initial velocity vy at the point 1;i5’ supposed Lo be given.
In Chapter ITY we shall see that for a curve defined by an
equation of the form y=y{£t";j ‘the time of descent from 1
o 2 is 1/172g times the value of the integral

+8 ) *a

=

1+

i 1

where g is’slfe’gravitational constant and « has the con-
stant }jglhé'aﬁj-'lwz*if’Zg. ‘The problem of the brachis-
tochidne is then to find among the curves y=4{x) which
p.;,*;-, through two points 1 and 2 one which minimizes

_ (WMe integral 1.
\\ w4
W

The only discussions of the problem which were pub-
tished in full in response to John Bernoulli’s invitation
were those of the Bernoulli brothers themselves? in May,
1697, and they are in many respects characteristic of
{heir authors. John's paper is to this day most elegant
and satisfactory rcading. Ie saw that the curve of
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quickest descent is identical with the path of a ray of
light in a medium with a suitably selected variable index
of refraction; and a known property of such paths enabled

. him to attain very quickly and easily a solution. His

method can be applied, however, to only a restricted
class of similar questions, The solution of James was®y
more Jaborious, and to us much less atfractive, sings *
it was couched in the language of the relatively plj;‘ﬁisy
geometrical analysis-which preceded the invention‘of’ the
caleulus and which was commonly used fop-gome time
thereafter.  But his method was a more gengral one than
that of his younger brother and was J{]‘Q’"ﬁrst step in a
long series of researches which hasAed to the theory of
the calculus of variations as we Know it today.

At the close of his paper, James invited mathemati-
cians in general to consideralthuch more difficult problem
of the caleulus of variations which he had devised, and
he offered to John jr\particular a tmoney prize of fifty
ducats for a.satiffactory solution, As it turned out,
however, the Qucats were saved, for although John
'claifned to dlave done so he did not as a matter of fact
succeed dhhis attacks upon the problem, and after a
rath.,e.(';tﬁfter discussion which dragged on for a number
oi%{eairs James finally published his own solution in

R ',1:?01. The two papers of 1697 and 1701 of James Ber-
*) "noulli were the starting-point for the researches of Euler

{ 170783}, a native of Basle and pupil of John Bernoulli,
one of the greatest of the world’s mathematicians, Tt
is to Euler that we owe the first important result in the
modern theery of the caleulys of variations, as we shall
see in later chapters. '

It is fair to say that the theory of the calculus of
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variations had its beginning in.the interesting brachisto-
chrone problem of John Bernoulli. One should not infer
from this remark that no problems of the calculus of
variations were known carlier, for we have seen already
that Newton had proposed such a problem and described
a characteristic property of its solution. Furthermore®,
the brachistochrone problem itself was more or dess
definitely in the mind of Galileo (1564-1642) in)\1630
and 1638 when he compared the time of fall of g\particle
along an arc of a vertical circle with those alonfg\polygons
inscribed in the arc. He seems fo conginde that the
time of descent on a circular arc is shg}zjbe\:than the times
on all other paths joining its end¢points, but his proof
does not justify this result.. Nowadays we know that
the solution curve is ncithcp.’a,lcircle nor a straight line
but a cycloid, as will be proved in Chapter TIT. A still
older problem of the calculus of variations is the iso-
perimetric problerg{)f the ancient Greeks described in
Section 7 below.s \None of these, however, could rightly
be regarded as\t}e starting-point of the theory of the
calculus oﬁ\'xfariations, for in the early referenccs to them
there y;@ie no indications of other problems of similar
typeg~or of mcthods of solution possessing generality
ofrapplication.
XNU6. A more general problem. With the exception of
~ 0 the integral in Newton’s problem those which have been
\/ mentioncd in the preceding sections all have the form

(3 I:fx'n(x, WV 1492 dx,

and we might propose to oursclves to find among the
curves y=v(z) joining two given points one which mini-
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mizes this integral . This problem also has a physical
interpretation. Tor suppose that in a plane transparent
" medium the velocity of light varies from point to point,
and that at an arbitrary point (x, ¥) it has the value
w(x, ¥). The index of refraction at that point has by defi-
nition the value n(x, y) =c/v(x, ), where ¢ is a constanf,
and the time df taken by a disturbance to travel along
an arc of length ds through the point (x, ) with “the
velocity (x, ¥) is approximately \:
di= ds. =1n(x ¥) 'l/-ln—ul——jﬁ’dx. '
wWx,v) ¢ AW
We see readily by an integration tﬁa’t}he integral 7 is pro-
portional to the time taken. by a\disturbance to traverse
the arc y=y(x) joining the o given points 1 and 2.
Now it has been veriﬁeglqghirsically that the path of a
ray of light in a medium in which the velocity of light
varies from point;”tq point is always one on which the
time-integral i{i.ibr short arcs at least, a minimum, so
that our problem'of minimizing 7 is that of ‘determining
the paths of rays of light in a plane medium whese variable
index of :réfraction is nix; v). : I o
}th Bernoulli noted that the time of descent of a
pariicle down 2 curve ¥ =y(z), and the time of passage of
waray along the same curve Jn a medium with the index
() of refraction u(z, y)=c/V y—aq, are, except for a con-
./ stant factor, given by the same integral (3) with this
index substituted. He knew furthermore that when a
ray of light passes from one medium to another the
sines of the angles of incidence and refraction at the
b.oun-ding surface are proportional to the indices of refrac-
tion.in the two media, and by thinkmg of his medium as

1
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made up of very thin horizontal layers with different
indices he was able to deduce the form of the curve of
quickest descent,

The integral (3) still does not include that of Newton's
problem as a special case, though it is general enough to

so include most of the classical special problems of the™,
calculus of variations in the plane. It will be quitgas °

.o % Ny
easy for us, however, to consider an integral of the form
N

at ¥ i

@) . I=_£ f(x, 3, ¥éx ~M}\\

having an integrand which is an arbitraginfunction of the
three variables #, ¥, ', as we shallldo in Chapter V.
Among all the arcs y=2(x) joinihgvtwo given points 1
and 2 we shall seek one which miinimizes the integral 4).
This is a problem of suﬁici‘epi:;'genera]jty to include all of
those hitherto stated as§pecial cases.

7. Other problems{eof the calculus of variations. It
would be a mista.]ge"t(}infer that the category of questions
to which the caléulus of variations is devoted is exhausted
even hy the qite general problem proposed in the last
section. /We' can vary the problem there described by
seckigg;}"minim_izing curve among those joining a fixed
pointhend a fixed curve, or two fixed curves, instead of
twb fixed points, or in many other ways. '

W %" The famous old isoperimetric probiem of the ancients
\.

\/

was that of finding a simply closed curve of given length
which incloses the largest area. The solution is a circle,
though it is not any too easy to prove that this is so.
Analytically the problem may be formulated as that of
finding an arc with equations in the parametric form

x=xll), y=y({) (aS1Zh)

"\
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satisfying the conditions

s(ty=xlt),  y@)=y(t)
but not otherwise intersecting itself, giving the length

_integral

.!Q o N . ! 4 ‘\A\
J 1V x4y di : \' N
f : {

Ny

a fixed value /, and maximizing the area integral { ™}

L S 4
i3

¥

The problems of the calculus of var'ﬁ’ﬁ%ﬁs for which one
or more integrals are to be gi\zeﬁx fixed values, while
another is fo be made a mmlmum or maximum, are called,
after this one, moperunetnc problems. The problem
proposed by James Bernbulh in 1697 was the earliest
isoperimetric problem after that of the ancient Greeks.

Tt will not bmposs;ble for us in the limited space of
the following¢pages to examine in detail more than the
simpler nopsjsoperimetric problems, though there are

_ many otlger types besides these which have already

been thloned }
\tTh_e theory of the calculus of variations has been

' &x Ensivel_y developed but not so' widely applied to special
o\ vcases, vegy few of the particular problems having been

exhaustively investigated. - In the following Chapters
II-TV three of the special problems mentioned in the pre-
ceding pages which have been studied in detail will be
discussed, and in Chapter V some of the results for the
more general problem formulated in Section 6 are col-
lected, with g brief historical sketch of the progress of
the theory from the time of the Bernoullis to the present.



__ CHAPTER II
SHORTEST DISTANCES

8. The shorlest arc joining lwo points. Problems of
determining shortest distances furnish a useful elementary
introduction to the theory of the calculus of variations ;O
because the properties characterizing their solutions at€)" -
familiar ones which illustrate very well many of the e
eral principles common to all of the problems sug ésted in
the preceding chapter. I we can for the momé‘i\ eradi-
cate from our minds all that we know about\.itraight lines
“and shortest distances we. shall have t Epleasure of re-
discovering well-known theorems byumethods which will
be helpful in solving more complicated problems.

Let us begin with the simplga‘st: Case of all, the problem
of determining the shortesty ii‘f'c"joinjng two given points.
The integral to be migirﬁiz’:ed, which we have already
seen on page 6 of the-preceding chapter, may be written
in the form N

N
s e

it we m:(;\ the notation f(»)={1+y"} and the arcs
y= y@( %, <%= x,) whose
-leigths arc to be compared.
~Sith cach other will always 2
\/ be understood to be continu-
ous and to consist of a finite
number of arcs on each of which the tangent turns continu-
ously, as indicated in Figure 4. Analytically this mecans

Fro. 4

17
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that on the interval #; <2 <z, the function y(#) is continu-
ous, and that the interval can be subdivided inte parts on
each of which y(z) has a continuous derivative. Let us
agree to call such functions admissible functions and the
arcs Whié_h they define admissible arcs.- Our problem
is then to find among all admissible arts joining two given . -
points 1 and 2 ohe which makes the integral 7 a minimund, \)

9. 4. first necessary condition. Let it be granted
that a particular admissible arc Ey with the equation

. y=y(x) (hSrZm) N

furnishes the solution of our problem, and let'us then seek
to find the properties which disting{dsh it from the
other admissible arcs joining pointjs,i'hﬂ:ld 2, Tf we select
arbitrarily an admissible function” 9(x) satisfying the
conditions g(x;) =9(x;) =0, the: equation

e Cy=y@tend (mZesw),

involving the arbi ry constant o, represents a one-
parameter family, of) curves which includes the arc En
for the special value a=0, and all of the curves of the
family- pass,through thie end-points 1 and 2 of E.
The value\of the integral I taken along an arc of the
family\'&pends upon the value of ¢ and may be repre-
se\r@@d by the symbol :

N I@= f "o/ ran')as

Alonfg thf: ifﬁtial arc By the integral has thle value F(0),
and if this is 0 -be 2 minimum when compared with the .

- values of the integral along all other admissible arcs

joining 1 with 2 it must in particular be a minimum when
compared , with the values 7(g) along -the arcs of the
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family (2). Hence according to the criterion for a

" minimum of a function given on page 4 of the last chapter

we must have I'(0)=0.

It should perhaps be emphasued here that the method
of the calculus of variations, as it has been. developed
in the past, consists essentially of three parts; first, the

deduction of necessary conditions which characterize a .

minimizing arc; second, the proof that these cond,lttons,
or others obtained from them by slight modlﬁcatl@ns
are sufficient to insure the minimum sought; dthird,
the scarch for an arc which satisfies the suffiéient condi-
tions. For the deduction of necessary.Conditions the
value of the integral I along the rmm@ﬁmg arc can be
compared with its values along mrj;*special admissible

.’

arcs which may be convenient Jor ‘the purposes of the

proof in question, for example® afong those of the family
{2) described above, but t.he suﬂimency proofs must be
made with respect to alb adinissible arcs joining the points
1 and 2. The third. part of the problem, the determina-
tion of an arc tlsfymg the sufficient conditions, is
frequently themost difficult of 2ll, and is the part for
which Eewe& methods of a general character are known.
For shortest—dlstance problems fortunately this deterroi-
natm\i 1s usually easy.

'B*y differentiating the expression (3) with respect to

«Q and then setting =0 the value of T ’(O) is readily seen

W40 be

\ 3

@ . o= f fy '

where for convenience we use the notatlon fy for the
derivative of the integrand f(»") with respect. to y. It
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will always be understood that the argument in fand its

- derivatives is the function y'(x) belonging to the arc Ey
unless somé other is expressly indicated, as is done, for
example, in the formula (3).

What now are the conclusions which can be drawn
from the necessity of the conditiond(0)=0? The
answer to this question is to be fou i the lcmmc\ K
of the following section which S requently, ‘J,p
plied in later chapters as well %1 “the solutiopof the
shortest-distance prohlems to which this chapt}er is de-
voted. .

10. A findamental lemma® In thedntégrand of the

~integral (4) the coefficient of 4’ is reg.l])r a function of x,
since the derivative fy contains asfity &rgument the slope
" /(%) of the arc E., and we mays denote this coefficient
by M(z). It should be notgd that the- function M(x)
is continuous except possibly at the values of # defining
the corners of the argdly, where the slope /(%) changes
<. abruptly. ~ At thos€ Points of the curve it has two values.
- ong corresponti‘mx\to the backward and one to the for-
ward slope. .. ‘Che lemma which we wish to prové' is then

as followsZ\"
F U@J\WEVTAL LEMMA. Let M(x) be a function of the
kind\Bescribed above, continuous on the interval m<xE%,
o else such that the interval can be subdivided into a finiie

.\ Rumber of paris on each of which M(x) is continuous. If
‘ N the integral

| f M(-x)n'(x)déa

| vanishes for every admissible ﬁmctzon n{(x) such that n(x,)
=n(x} =0, tken M(x) is necessarily a constant,
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To see that this is so we note first that the vanishing
of the integral of the lemma bmplics also the equation

(3 | fx){M (x) —Cln'(z)dw=0

for every constant C, since all the functions n(x) to be

considered have g{x) =n(x}=0. The particular funed

O

\

tion p(x) defined by the equation

A%
<« 3

&

: ES
(6} n(x)=f Mx)dx—Cla—n) 7
s BRUAN
evidently has the value zero at &=2, and it will vanish
again at x=x if, as we shall suppose’C¥is the constant
value satisfying the condition N\ -

0= f M) C =)
/ " .~:':“

The [unction (%) defilied by equation (6) with this
vilue of C inserted is@ow one of those which must satisty
cquation (3).  Lt§ Merivative is 7'(x) =M(x) —C except

-at points _wh(;re\\M {x) is discontinuous, since the deriva-

tive of .an;i'xitégral with respect to its upper limit is the

value of the integrand at that limit whenever the inte-

grand.is” continuous at the limit. For the special func-
tiphﬁ{(x), therefore, equation (5) takes the form

WS
3

oY f'[M(x) —CPdr=0

and our lemma is an immediate copsequence since this
equation can be true only it M{x)=C.

11. Proof that the siraight line is shortest. In the
equation y=y(x)+an(x) of the family of curves passing
through the points 1 and 2 the function n{x} was entirely

N
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" arbitrary except for the restrictions that it should be
admissible and satisfy the relations 7(%;) =n(x;) =0, and
we have seen that the expression (4) for I'(0) must

© vanish.for"every such family, The lemma of the pre-

- ceding section is-therefore applicable and it tells us that

along the minimizing arc Ey an equation ¢ \“f
) . '\
| = Y = . o .
b= &

raust ‘hold, where € is a’ constant. If we"gbl\ve this
~ equation for 9" we see that 4'is also a constaht along Fp,
and that the only possible minimizing, aréis thercfore a
single straight-line segment without eprners joining the
point 1 with the point 2, - S
~ The property just deduced fom the shortest arc has so
far only been proved to be necessary for  minimum, We
have not yet demonstrated'gonclusively that the straight-
ling segment B, joiningM and 2 is actually shorter than
every other admjssiiﬂ&\aré joining these points. In order
to actually estafbh\}]:i this fact let us now use n(x) to
denote the inérément which must be added tg the ordi-
nate of Epat the value #-in order to get the ordinate
of an athitrarily selected admissible arc Cy joining 1

¥

wit,h\\'l“,\SO that the equation. of C;; will be
WY =@t - (msesw) _'

4 .\" 3 - ) .
\The difference between the lengths of Cy, and Ej can

now be expressed with the help of Taylor’s formula in
the form ' '

| I(Cﬂl) —I{Eys) =£ ff()."'i-??') ~—f(¥")}dz

__ =£ ittt f ot topwiae,
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where J(Ci) and I(Ey) are the values of the'integral T
along the two arcs; fyy is the second derivative of the
function / with respect to ¥'; and 8 is the value between

0 and 1 introduced by Taylor's formula. The next to
last integral vanishes since fy is a constant along By and
since the difference n{x) of the ordinates of two arcs
Cy and Ly with the same end-points must vanish at @ (\J)
and %, Furthermore the last integral is never negative.)
sirice the second derivative fyy =1/(1-4y?)? is al@ays
positive. We sce therefore that I(Cr) ~I(E) j&ngeater
than zero unless 1'(x) vanishes jdentically, it Jhich case
n(x) itsclf would have everywhere the constant value
zero which it has at % and %, and C{{ sould coincide
with El«z. . . P, \¢

It has been proved therefore that the shoriest arc from
the poini 1 to the point 2 15 gevessarily the straighi-line

. segment joining those pnintsla}gﬁd‘ that this segment is actually
shorter than every other admissible arc with the same end-
poinls. N\

One should n&(iéé the role which the positive sign
of the derivatiy® fyy has played in the determination
of the minitatioh property. If the sign of this derivative
had’ beenﬁ‘ﬁl‘-:;gative the difference I(Cu)—I(Ewn) would
have b@:\ﬁ ‘negative and I(Ex) would have been a maxi-
musnihstead of a minimum. This is an analogue of the
-:cii’cérion mentioned on page 4 for the simpler theory of

“\Faxima and minima, of functions of a single variable.

12. Two imporiant. auxiliary formulas. The type of
proof used in the preceding section to show that the
straight line joining 1 with 2 s shorter than every other
admissible arc joining those two points is a very special
one, not. applicable in general to problems of the calculus
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of vasiations whose mtegra.ls I have integrands contalmng_,
one or both of the variables x and.y as wellasy’. Itwill
be well worth while, therefore, to consider a second form
. of proof which will extend somewhat the results already
found for the problem of finding the shortest distance
between two points, and which will be applicable no{)°
only to the problems @E
. shortest chstances ‘con—
. sidered in thig) chdpter
but also to.t‘h}agsé which
we shall_study later.
We, aivall need first of
al} t\}o special cases of
,m’re general formulas
) ~Swhich are frequently ap-
S8Y plied insucceeding pages.
Let Fa be a straight-
RN line scgment of variable
(\J length which moves so
that its end pou\n% de&,(,nbe sirnultanecusly the two curves
Cand D shown e Figure 5, and let the equations of these
curves ,{1 pard,metrlc form be
J\\”\ (C) r=mll), ¥ “3’3(5) ’

A D) z=xl), vy

\* The length

-

! =/l/(x4—xa)2+ (}‘4 —--3:3)2 .
of the segment F, has the differential

g )@= du i) (dyi—d)
. 1, ""-1—13)2—{“ (y4 y3)2
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When the notation p=(ys—vs)/(xa—%s) is used to denote
the slope of the line Eze this result may he expressed in
the more convenient formula of the following theorem:
If a straight-line scgment-Eqs moves $0 that its end-poinis
7 and 4 describe simultaneously two curves C and D, as L
shown in Figure S, then the length I of Eas has the dz:ﬁerentiqls \

N\

dx+pdy | ¢ ¢
Vi+#is ”.("}a

where Lhe vertical bar indicales that the value af tké\ﬁrecedifzg
expression ab the point 3 s o be subtractedNrom its value
at the point 4. In this formula the d@ﬁ'&iiﬁiﬂls dx, dy at
the poinis 3 and 4 are those belongingda C and D, while p is
the slope of the segment Ea. O

We shall need frequently.;t’q?integrate the expression
in the second member of equation (7) along curves such
as C and D. This is, évidently justifiable along C, for
example, since the slope p={Ya—ye}/ (Hs—1s) 15 2 func-
lion of # and sineouthe difierentials di, dy can be caleu-
lated in tcrms.:;% and df from the equations of C, so that
the exprcgs\ioﬁ' {akes the form of a function of ¢ multiplied
by di. ,.khe integral I* defined by the formula
k\ rée dx—l_—ii_j_f
_ ) Vi

'“\i Jwill also be well defined along an arbitrary curve C
when # is a function of & and y, provided that we agree
to calculate the value of I* by substituting for x, ¥, dx, dy
the expressions for these variables in terms of £ and df
obtained from the parametric equations of C.

Let 4 and 4 be two parameter values which define
points 3 and 5 on C, and which at the same time define

(7) dI(Es) =




N
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two corresponding points 4 and 6 on D, as in Figure 5.
. If we integrate the formula (7) with respect to ¢ from 4
to % and use the notation I* just introduced for the inte-
gral of its second member, we find as a further result:

The difference of the lengths I(Ey) and I(Ew) of the
moving segment in fwo pamums By and Esq is given by ﬁw N\
© formula D

® H(Ee)~HE) =T*(Da) ~I¥(Cs) .

\

'lhls and the formula (7) are the two unpor«thn\t ones
for which we have been secking. It is evidenh that they
will still hold in even simpler form vyhe}x: one of the
curves.C or D degenetates into a pointesince along such a
degenerate-curve the differentials da and dy are zer0.

. The integrand of the mtegral F* has a simple geo-
‘metrical interpretation at the pmnts of the curve C along
which it is taken. At thegoint (x, v) of the curve (' in
Figure 3, for example, ghd angles between the z-axis and

the tangents to C a.nd\E have, respectively, the cosines
and sines N\

2 ’p. _y; N | P
l/x"z‘-f-}"!’ ‘Y:/?'—l—y’z’ ]/1_‘__19-_;, 1/1+P2.

Sinc thc angle ¢ between these tangents, and the ele-
ment i of length ds on C are defined by the equations

’+ ﬁy

"(9) cosﬁ—-w, ds Vx’2+y’2d£

it follows that the 1nterrra1 I *
convenlent form

' . dx+pdy o
(10) | I f‘fH-ﬁz.'_ cosﬂ.ds..

can also be expressed in the
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13. The notion of a field and a second sufficiency proof.
We have scen on page 19 that necessary conditions on the
shortest arc may be'deduced by comparing it with other
admissible arcs of special types, but that a particular
line can be proved to be actually the shortest only by
comparing it with all of the admissible arcs joining the
same two end-points. The sufficiency proof of thisg N
section is valid not only for the arcs which we have named
admissible but also for arcs with equations in the para-
metric form : LV

(11) w=sx(t), y=y) (LStSH)3
. 3

We suppose always that the functions?\'é@ and y(f) are
continuous, and that the interval ik ean be subdivided
into one or mo‘r_e'parts‘on each, of “which x(t) and ¥(¢)
have continuous derivatives suﬁh that #2430, The
curve represented is then gpi’ﬁ:inuous and has a continu-
ously turning tangent exsept possibly at a finite number
of corners.. A mugl:r'}arger variety of curves can be
represented by such parametric equations than by an
equation of thé orm y=y(x) because the parametric
represcntatjertays no restriction upon the slope of the
curve or £he number of points of the curve which may
lie up‘a@?’a‘; single ordinate, while for an admissible arc
y=4fg) the slope must always be finite and the number
N of.points on each ordinate at most one.

\“; “ The mathematician who first made satisfactory
sufficiency proofs in the calculus of variations was Weier-
strass, and the ingenious device which he used in his
proofs is called a field. For the problems which we are
considering in this chapter a field F is a region of the xy-
plane with which there is associated a one-parameter
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family of straight-line segments each intersecting once
a fixed curve D, and which have the further property
that through each point (x, y) of F there passes one and
but one of the segments. The curve D may be either in-
side the field, or outside as illustrated in Figure 5, and as
a special case it may degenerate into a single fixed pointe

The whole plane is a field when covered by a systen’
of parallel lines, the curve I being in this casé any
straight line or curve which intersects all of the pfara:llels.
The plane with the exception of a single poin£0'is a field
when covered by the rays through D, and Q34 degererate
curve D. The tangents to a circle deshet cover 2 field
since through each point outside of ~t:hé circle there pass
two tangents, and through a point\ifiside the circle there
is none. If, however, we cut off half of each tangent at
its contact point with theveircle, leaving only a one-
parameter family of hs.l,‘ff'ra'ys all_pointing in the same
direction around the{iucle, then the exterior of the circle
is a field simply g:gve\ed.by the family of half-rays.

At every point (x, 3} of a field F the straight line of
the field has(a)slope p(x, ¥), the function so defined being
called theGlope-function of the field. The integral I*
with}l}is"slope-function in place of  in its integrand has
a,}skéﬁﬂite value along every arc Cy in the feld having
. @qﬁati{)ns of the form (11), as we have seen on page 25.

WWe can prove with the help of the formulas of the last
section that the integral 7* associated in this way with
a field has the two following usefyl properties:

The values of I'* are the same glon g all curves Cy in the
field F having the same end-points 3 and 5. Furthermore
along each segment of one of the straight lines of the field the

_value of I* is equal fo the lengih of the segment.
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To prove the first of these statements we may con-
<ider the curve Css shown in the field of F of Figure 5.
Through every point (¥, y) of this curve there passcs,
by hypothesis, a straight line of the field F intersecting
D, and the formula (8) of page 26, applied to the one-
parameter family of straight-line segments so determined
by the points of Ca, gives

T%(Cas) = [*(Dis) — I (Esg)-+- 1{Eas) - O

2

The values of the terms on the right are CQQEI:{Ieter
determined when the points 3 and 5 in the ficldare given,
and are entirely independent of the form of the curve
Cy joining these two points. This she wethat the value
T*(Css) is the same for all arcs Ca inthe field joining the
same two end-points, as stated in the thcorem.

The second property of theitheorem follows from the
fact that along a straighg*lii;[e segment of the field the
diffcrentials dv and dy satisfy the equation dy=p dx, and
the integrand of I* reduces therefore to V' 1+ p*de which
is the integrand Ochc Jength integral.

We now haVe the mechanism necessary for the suffi-
clency proof Which was the objective of this section. We
wish to show that a straightline segment F joining a
pair b(BHints { and 2 is shorter than every other arc
jointng these points. For that purpose let us consider

;t{ic"ﬁcld formed by covering the whele xy-plane by the

\m‘: lines parallel to B  When Cy is an arc joining 1 with 2
in this ficld and defined by equations in the parametric
form (11) the properties just deduced for the integral I*
give :

I(Ep)=T*{En)= T¥(Ci2) =f cos 8 ds,
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. and the diffé'.rence between the values of / along Ch
and By is therefore ’

1(0;2)4I(Elg)= f “(1—cos 6) ds20.

The equality sign can hold only if Cy» coincides with Ey;\
For when the integral in the last equation is zero welgust
have cos 0=1 at every point of (i, from which it-ollows
that Cys is tangent at every point to a straightdine of the
field and satisfies the equation dy = p da: XSuch a differ-
ential equation can have but one sol\ti.on through the
initial point 1 and that solution is BS> We have proved
therefore that the length J(Ciy)61)Cie is always greater
than that of £y unless Cyy is coineldent with E,.
We may emphasize agqj’ﬁ" here that -the sufficiency
proof just given is considerably more inclusive than that
of Section 12, page 23, since it clearly shows that a
straight line joining the points 1 and 2 is not only shorter
than all othex ‘admissible arcs y=y(x) joining these
points but a%% shorter than every other curve with the
same engpmnts defined by equations in the parametric
form (11). o '
(147 The shoriest arc joining o point to o curve. If a
_ '.;iQiE'd point 1 and a fixed curve N are given instead of two
K\ fixed points it is clea# that the shortest arc joining them
O must a.gain be a straight-line segment, but this property -
v, alone is not sufficient to insure a minimum length.
There are two further conditions on the shortest line

fmfn a point to a curve for which we shall find very inter-
esting analogues in connection wi

! ; th the problems con-
- sidered in later chapters.
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Let the equations of the curve N in Figure 6 be written
in terms of a parametcr 7 in the form

e=a(r),  y=),

and let 75 be the parameter value defining the intersection

point 2 of N with a shortest arc Ey; joining 1 with V. AL
{ N\

The arc Fp must evi-
dently be a straight-
line segment, since it
iz certainly a short-
est arc joining 1 with
2 il it has this pro-
perty with respect to e
curves joining 1 with - OFwe6
N. Thelength of the S\ Y.
straight-line segment joinit}g’j%ﬁe point 1 with an arbi-
trary point (x(r), ¥(7)) JEV is a function I{r) which
must have a minimuhat the value 7, defining the par-
ticular line Eps. ¢ Tas clear that the formula (7) of page
25 is applicable_td the one-parameter family of straight
lines joining/d with N when in that formula we replace C
by the ozp\t 1 and D by N. . Since along C the differ-
entialgd$; dy are then zero it follows that the differential
of .t‘héf{mction I(7) along the arc Ep is

a3
NS

o) dztpdy |2
di= Vits |

where the har indicates that the value of the preceding
expression is to be taken at the point 2. Since for a
minimura the differential ¢f must vanish it follows that
21 the point 2 the diflerentials 4w, dy of NV and the slope

O\
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pof L‘m satisfy the condition dz+ pdy=0, i Leure tbat
these two curves must intersect at right angles.
Even a straight-line segment thzough 1 2nd inter_
secting N at right angles may not be a shortest arc joining
" 1 with N, as may be seen with the help of the familiaz
string property of the evoluie of N. The segments of
* the straight lines perpend_cu‘a.' to N cut off by N and ™
its evolute G i» Figure 6 form a family to which, thf‘
formula (8) of page 26 is applicable. If in that form‘ula
we replace the curve C by Gand Dby N then \\

I(Fm) I(E:,-g)—-f*(st) I*(GK

But the inteyrals in the second member of this formula
have the falues

I*CN%) = ( cos & d35‘=‘:0 " I*(Gss) =I(Gga)

sinow. cos =0 along X where the straight lines of the
famuly meet N at nght angles, and cos § =1 along the
envelope G to Wil;n these lines are tangent. Hence
from the next™ t;ha,st equation we have the formula
K ) N H{Ew)=1(Ga)+I(Es) -
This{s the string property of the evolute, for it implies
tha\t the lengths of the arcs Ey and G+ Egq are the same,
am:l hence that the free end 6 of a string fastened at -3
'i" and allowed to wrap itself around the evolute G will °
describe the curve N, '

" It is evident now that the segment E;; cannot be a
shortest line from 1 to & if it has on it 2 contact point 3
with the evolute G of N. For the composite arc
Eys+Gas+ By would in that case have the same length as
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E., and the arc Eu+Ls+ Es, formed with the straight
line segment Lg, would be shorter than E. . It follows
then that -

If an arc Ey intersecting the curve N ab the point 2 is
to be the shorlest joining 1 with N it must be a siraight line
perpendicular to N af the point 2 and having on i ne

 We should note the exceptional case when the evolufe)
G has no branch at the point 3 extending toward “the
point 2. This happens when N is a circle and t];‘e'\e&blute
G degencrates into a point, or when the evolutethads a cusp
at 3 with its point directed toward the point'Z: In these
cases the proof which has just been ma [ does not hold,
but it can still be shown that when M (H.) is 2 minimum
the point 3 cannot lie between 1 and 2. Tt can cpincide -
with 1 only in the exceptional, gase when the envelope G

conlact point with the evolute G of N. (N

“has at 3 no branch extending toward the point 2.

We might continue igdeﬁ’nitely to seek further charac-
teristic properties of~the shortest arc joining a point 1
to a curve N, but\ft “Wwill be more satisfactory if we can
prove that thoge,already found actually insure a mini-
mum, Weinter readily from Figure 6, page 31, that
when thes e’\;ld’—point 1 lies between 3 and 2 there is adjoin-
ing E},\:?}égion F of the plane which is simply covered
by, t}‘%normals to N which are near to En.  An analytic

~Pi06'f of this statement is given for a more general case

g |
k3
\:

I Section 60, page 156, but for the preseat we may be
content with our inference of it from the figure. The
region F so covered by the normals to NV forms a field
such as was described in Section 13, page 27. The -
integral I* formed with the slope function p(x, y) of the
field in its integrand is independent of the path and has
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the same value as I along the straight-line segment Eus
of the field. It has furthermore the value zero on every

" arc of N since the straight lines of the field are all per-

pendicular” to A and its integrand therefore vanishes

* identically along that curve. Hence for an arbitrarily

selected arcCis in F Jommg 1 with IV, as shown in T:gure\
6, page 31, we have N\

I(Ew) =I*(Ew) = T¥Curk N o) =T*(Cu) s
" \‘

. _and Lhe dlﬁercnce be'm een the lengths of\G1; and Ej; is

I(Cn) I{En)= Icu) —I%( Cu) :{(l—cos O)ds .

We may prove as in the pre;;e’dmcr section that this difter-

ence is positive unless Cred8 tdentical with Ey, so that we
have established the folldwing theorem:
For -a stratghis dige segmeni Fs perpendicular to the
curve N of the pésl 2 and not touckmg the evaluie G of N
%gkborkobd F in which Eis is shorter than
every other,art joining I with N.
It ig'provable, though we shall not undertake it here,
that\the arc By, still has this minimum property when the
\&mt 3 coincides with 1 and the envelope G has no hranch

extendmer from 3 toward the point 2, the only exception

bemg the case when N is a circle. If N i is a circle and 1

. its center then all of the radii are equal in length and it

can be shown that they are shorter than the other
curves which join 1 to N,

15. The shortest arc from a point to an ellipse. An
interesting application of the results of the preceding
section is afforded by the problem of determining the
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shortest curve joining a given point 1 to an ellipse whose
equations may be taken in the parametric form

x=acos? y=bsint (0=i=Z2x).

We know that there must surely be such a shortest curve
since the function :

$(D =V {t1—a cos £*+ (m—b sin 2%, | \:\

_representing the distance from the point 1 to a movab}e

point on the ellipse, must have a minimum at some {value
% on the interval 0=<¢=2r, i.e., at some pomt\Z‘on the
ellipse. The straight line Fp Jommg 1 with'2+s then as
short as every other straight line drawg\&om 1 to the
ellipse. If Cy is another curve jOlIll]ng to a pomt 4 on
the ellipse we have the relations (% v

I(Em)sT (EL{)<“I (Cu)

" between the lengths of the. stralght lines® Eie, Eu, and

) —?

of the curve Cu.
In order to charictenze the shortest arc Ew more

explicity let ug c‘aftsnder the evolute of the ellipse. The
radius of cur»ature of the ellipse has the value

(xrz+yf2) 8 2 1.8 2
x'ﬁ iy b(a sin? $4-8° cos® )F,

aﬂ(}'\}ae equa.tlons of the evolute are

cost ¢,

o . t=x—Rsin =2

2
a2,
sin® £,

n=y+R 'cos r:bz-—

where (£, %) is the running pomt on the evolute, and 713
the angle between the z-axis and the tangent to the elhpse
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at the point whose parameter value is £ The cvolute
has the well-known form shown in Figures 7 and 8 It
is evident that the number of normals which can be drawn
from 1 to the ellipse is the same as the number of tangents
{from 1 to the evolute.

" In casc the point 1 is inside the evolute there are [our

N ) 0 " 3 - el - N\
normals through it, as is shown in Figure 7, and of thesgh

~only the striight

line El-g (ﬁﬁd EJ_:'

can fu{riish short-

estdistances since
) J'\hc others both
.'\’:Thave points “of

g+ Contact with the
/ evolute between 1
and the ellipse.
We know further
that cach of the
arcs Fi» and Ee
does furnish a
. = O o relative minimum
o the‘ sese that cach has a neighborhood F in which at
lea:st' t\1¥ shorter than every other arc joining 1 to the
ellipsé/” The shortest of all the arcs joining 1 to the ellipsc,

&
Mgt 7
N\

',‘th one furnishing the so-called absolute minimum, must
Labe one of these arcs, and we see
Eys 15 the one,

readily in Figure 7 that

’We .ma.y prove the last statement more explicitly by
notlfng In Figure 7 that the normaj £ from the igltef'
sectlon- point 3 of Ey, with the x-axis is by symmetry
eq:ua} in length to Es. ‘The broken line Ey+E licvs
within a field F of normals about Euin ﬁ'hich the suff-



FROM A POINT TO AN ELLIPST .37

ciency proof of the last section applics, and we have
therefore the relation

I(Ey)+ (B> I(Ess) =I(Ea)+1(Ew)

which shows that the length I(Er) is greater than I{E).

I{ the point 1 is outside of the evolute therc are but
{wo normals from it to the ellipse, as shown in Figure 8.0y
One of these only, the O
segment Eyp of the fig-
ure, furnishes a rela-
tive minimwn and it
must also in this case
provide the absolute
minimum.

From these results
it is clear that oneach
normal to the ellipse
the x-axis marks thes _
point beyond which Fic. §
the scgments b(\‘flr’ie : :
normal no lofiger furnish an absolute minimum. When
a point L \i?;zgi“\.:cn the shortest line of all from it to the
cllipse fathe unique normal segment through 1 which
has\qaﬁ 1o contact point with the evolute and no inter-
gection with the g-axis. There are a number of excep-

w\;"\;’t’iénal cases when the point 1 is on the z-axis or the

V™ evolute which the reader will readily analyze for himseli.
In particular we may notice that on the normals to the
two points at the ends of the major axis of the cllipse
the evolute has branches receding from the ellipse. This
is an illustration of the exceptional form for the envelope
¢ mentioned in the last section.

1EN
1€ 3
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" 16. The ‘shortest a?c joiming fwo cwrves. With the

- results of the preceding sections in mind it is not difficult

to solve the problem of determining the shortest distance

“hetween two curves., Let M and N be two given curves
- intersected by a third arc Ei in the points 1 and 2, respec-

tively, as shown in Figures 9 and 10. 1If Ep, is to fuml:h \

- a minimum distance from M to IV it must be a stralghi—
ling perpendlcu]ar to them at the intersection le}lto 1

and 2, since it is evident that B, must furnish a mihimum
among ‘the arcs joining M with 2, or N withe I\

A furthéer condition on the curvatures\of "M and N
at the points 1 and 2 is, however, nece}sary Let the
points 3 and 4 be the centers of curv\ature of M and N,
respectively, on: their common norrpal E, 'Then the new
necessary condition is that tht%"c points with the points

. 1 and 2 must lig in the circulags order 4312 on the straight .

lire E, no comc;dences being permitted except possibly
that 3 may fall upond™ By circular order is meant the
order of the points pn the linc E when its two ends at
N infinity are thought of as
joined together to form

" aclosed arc.
To prove the neces-
sary condition which has
- just been stated suppose
.FIC.9_._ ~  that the point 4 is on
o ' the segment 312, as
shown in Figure 9, so that the circular order of the
four points is not 4312. Let 5 be & point of 312 so

Th 35 contains neither 1 nor 4.
en in every neighborhood F of Es, there is an arc

Cy w1th length less than that of EM, according to the
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theerem of page 33, since the ceater of curvature 4 of
N Hes between 5 and 2. On the other hand, when the

neighborhood F 15 Sufﬁciéntly small, the segment Cs of

this arc is longer than Fg since 5 lics between 1 and the

center of curvature 3 of M, according to the theorem of

page 34. From the inequalities -

HCa) - IC)<IENHI(B) , TCZIED (&

expressing these relationships it follows by subtfaetion
that Cy is shorter than Ey;, and hence that iy this case
E,; could not furnish a minimum, \ .
When the points 3 and 4 coincide t hé/arc E,, may or
may not be the shortest joining M witpN. Only a more
elaborate study than we shall maké-here could lead to a
conclusion in that case. ONY
Let us assume now
that the four pointslie
in the required orclzex'g
4312 on the line Fiith
4 distinct from\3, as -
shown in Figure 10,
and let uggelcct again
_ 'cJ,rlz;itI‘@\’r“ﬂ~ 7 "a point 5 between 4 and 3. ¥rom the theorem
onL E‘c%c 34 we know that in a suitably small neighborhood
:ROf'E,r,g the length of Es s shorter than that of évery other
<\ Ve joining 5 with N. T.et Co be an arbitrarily scl:ected
arc in F intersecting M and &N in 6 and 7, respectively.
We can extend Ca to the point'5 by means of an arc Crs
not longer than Eg, since the center of curvature 3 of M

is between 5 and 1. If Cer is not id_énti;ally Eys, then

M N

Frc. 10

. I(C{,s) —i—‘I(Cg:r) -y I(Ef.l) +I(El‘3) 1 I(,CBG} .é— I(Em) *
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From these inequalities it follows by subtraction that
every arc Cg joining M .with N in F has length not less
than that of E. Our conclusions are therefore as
foltows:
The shortest arc jeining two curves M and N must be
¢ straight line Ly perpendicular io these curves at ils end< )y’
points I and 2. The centers of curvature 3 and 4 of M{E“z)?d .
N, respectively, on the line E must lic in the cz'rméa&o‘rder
4312 with 1 and 2, no coincidences being permilfed excep!
that 4 may possibly fall wpon 3. NS
If an arc Foy has these properties, witihhe additional
assumption that 4 is distinct from 3, tkq% there is a neigh-
borhood F of Eug suck that the ngikpj‘zhu is surely less than
) that of every other arc in F joining W with N.

R g
& s
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CHAPTER III
THE BRACHISTOCHRONE PROBLEM

17. Iis significance as an illustration. The brachisto- A
chrone problem is historically the most interesting of\ ™

all the special problems mentioned in Chapter I since ds
we have there seen it gave the first impetus to systefmaftic

rescarch in the calculus of variations. Since 'I;h}'&time of |

the Bernoulli brothers it has been used with great
regularity as an illustration by writerg-on’ the subject,
and it is in many respects a most gxcqlléfn%’one. Unfortu-
nately in the forms originally proposed by the Bernoullis
it does not require the applj’éatfbn oi an important
necessary condition for a fpinimum  which " was first

escribed by Jacobi in 183% more than a century after
the calculus of variafions began to-be systematically
studied?® A specia{ ¢dse of this condition is the restric-
tion on the pesition of the center of curvature in the
problem of Minding the shortest arc from a point to 2
curve, as dfcgcribed in the theorem on page 33 of the last
chapten, Tt is perhaps at first surprising that the signifi-
canee\sf such a simple instance of the condition escaped
thé carly students of the calculus of variations, but &

Cstudy of the older memoirs soon Impresses one with a

realization of the serious difficulties encountered with
the methods originally used. Throughout the eight-
eenth century, investigators in the calculus of variations
for the most part desisted when they had found the forms,
or in many cases the differential equations only, of the
minimizing curves which they were seeking.

41

Q
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Tt is natural at first: eight to suppose that a straight
line is the path down which a particle will fall in the

shortest time from a given point 1 to a sccond given -

point 2, because a straight line is the shortest distance
. between the two points, but 2 little contemplation soon
convinces one that this is not the case. John Bernoulli,
~ explicitly warned his readers against such a suppoelthl

when he forinally proposed the brachistochrone probim -

in 1696, The surmise, suggested by Galileo’s remalka
on the brachistochrone problem, that the ¢ug x.e\{?f quick-
est descent is an arc of a circle, is a more rec.sunable one,
since there seems intuitively some ]ustmc}s‘uon for think-
ing that steepness and high velocity, at\the bepinning of a
fall- will condiice to shortness in thétime of descent over
the whole path. It turns outs however, that this char-
acteristic ean also be overdene the precise degree of
steepness required at the, ;’start can in fact only be deter-
mined by a suitable aftathematical investigation.
_ The first step Wﬁch will he undertaken in the dis-
cussion of the prablem in the following pages is the proof
that a brachistechrone. curve joining two given points
must he a\cyclold We are familiar with the cydoid
as the Elrbhed lecus of a point on the rlm of a wheel which
rolls on a hor-
‘ izontal line,
/ as shown in
ol Figure 11. It

) turns cut that
_the bra.chjstochrone must con51st of a portion of one of

the arches turned upside dow 1, and the line on the under
side of which the circle rolls must be located at just the
proper height above the given mltial point of iall,

N
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When these facts have been established we are at '
once faced by the problem of determining whether or not
such a cycloid exists joining two arbitrarily given points.
Fortunately a modification by Schwarz (1845-1923) of a
method due to the Bernouili brothers will enable us to
prove that two points can always be joined by one and
but one cycloid of the type desired. RV,

When these resulis had been attained the eighteenthé.\
century student ‘was content with his progress, but “we
cannot be so easily satisfied because we know(thdt in
other problems of the calculus of variations further condi-
tions on the minimizing arc are required which are quite
difierent in character from those which Have so far been
described.  Our doubts for this partietlar probiem will be
removed, however, by a so-called gufficiency proof which
will definitely establish the f_@.cﬁﬁ:tﬁat the time of descent
froma given point I to a giv;ilﬁoint 2 on a suitably chosen
cycloid is shorter than that on every other curve joining
those two points. ZFite method used is again that of
Weierstrass, a speéial case of which we have already con-
sidered in Sectigi13 on page 27 of the last chapter. The
argument thefe given and the one which we shall see in
the case 6fthe brachistochrone are excellent illustrations
of thé\bybe of proof which is effective for more general
prokletns of the calculus of variations.

o) M8. The analytic formulation of the problem. In

< \érder to discuss intelligently the problem of the brachis-

tochrone we should first deduce for ourselves the inte-
gral which represents the time required by 2 particle to

fall under the action of -gravity down an arbitrarily

chosen curve joining two fixed points 1 and 2. It is

agreed that the initial velocity o at the point 1 is given
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in advance, and that the particle is to fall without frie-
tion on the curve and without resistance in the surround-
ing medium, If the effects of friction or a resisting
medium are to be taken into account the brachistochrone
' problem becomes a much
mote complicated one,
Let m be the 31@1?%5.\

of the moving particte P
in Figure 12 afd 5 the
distance thmugh which
it has faNen irom the
point Aaléng the curve of
descent C in the time £ -
¥ ' _ Pnjorder to make our an-
Fre. 12 N alysis more convenicnt

A\ we may take the posi-

tive y-axis vertically d(‘)yvih‘v}ard, as shown in the fignre.

The vertical force pof gravity acting upon £ is the-

. product of the masd.n by the gravitational acceleration

P

g and the onlyforce acting upon P in the direction of
the tangent(lipe to the curve is the projection g sin 7
of this vertical gravitational force upon that line, DBut
the J{Qljsea]ong the tangent may also be compuled as the
prothict md?s /de of the mass of the particle by its acceler-

Atieh along the curve. Equating these two values we

A find the equation

E_ g
gt EST=Eg0

n which a common factor m has been discarded and

u.se has been made of the well-known calculus formula
sin 7=dy/ds. ' '
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To integrate this equation we follow a customary
procedurc and multiply each side by 2ds/dt. The anti-
derivatives of the two sides are then easily found, and
since they can differ only by a constant we have

ds 2
O (%Y = 2gre R
¢\
The value of the constant ¢ can be determined if xye;;}
remember that the values of y and o =ds/dt at the initial
point 1 of the fall are i and @, respectively, 5o H:f@t for
=0 the last equation gives O :

_ _ n=2gn+c. \\,
With the help of the value of ¢ fronyt‘h\l‘;équation, and
the notation D :

L

N

N’

T
) a =3'1t_:§§ '

- equation (1) becomes £
WO
2 28 )

©) (gf)’\ﬁvg'y—zgyx+v§=2g(y—¢)-
An integmtioﬁ)ﬁéw gives the following result which we
have becwsecking: _

Thellime T required by @ particle stariing with the _
iiﬁfjfl{bl'\delocity o to fall from a point 1 10 & point 2 alorg . -
@rurve is given by. the integrals

w4

Ry G B
- _-ll/2g A l/y—a 1/2g % y—e ’

where 1 4s the length of the curve and a=yi_—ﬂ§/ 2g.
It is clear that an arc which prinimizes one of the
integrals (4) expressing T’ will also mihimize that integral
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- when the factor 1/V/2g is omitted, and vice versa. Let
* us therefore use the.notations

. . £ 2
5 I= f 16,908, 10,9V o
for our integral which we seek to minimize.and its intes,
grand. Since the value of the function f(y, y') is infinite
when y=o and imaginary when y<a we must confine
* our curves to the portion of the plane which Jies below
the line y=a in Figure 12. This is not reghina restric-
tion of the problem since the equation P=Yds/df)?=2g
(y—e} deduced above shows that a particle started on
a curve with the velocity » at thpfisdint 1 will always
come to rest if it reaches the altithde y=a on the curve,
- and it ean never rise above t;‘kqafi:.aititude. For the pres-
ent we shall restrict our curves to lie in the half-plane
- y>a. In a later sectioh;'oof this chapter we shall see
what happens when{ourves are permitted which have
points in com:'nog'v?ith the line y=a.
In our study\of the shortest-distance problems in
- the last chapfer the arcs to be considered were taken in
the formiySh(x) (4 Sx =) with y(x) continuous on the
interyal\xlgx'é %z, and the interval could furthermore
. b?\iﬂfﬁi\’ided into parts on each of which the derivative
- ¥(#) s continuous. An adwmissible arc for the brachisto-
A éhrone problem will always be understood to have these
\* properties hesides the additional one that it lies entirely
in the hali-plane y>a. For an admissible function.
however, we retain always the definition given on page
18 of the preceding chapter. Our problem is then to
find among the admissible arcs joining the points 1 and
2, one which minimizes the integral I,
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19. A first necessary condition. Asin our study of the
problems of determining shortest distances let us suppose
that a particular admissible arc Ex with the equation

y=y(x) (wEx=m)

actually furnishes a minimum for the integral 1, and let ~
us then seek to determine its properties. If 7(x) is anc,
admissible function having n(x1) =n{%;) =0 then the ~
family of arcs : \

i
NN
L 3

(6) y=y@)ton(®)  (mSrswm) (O
contains Ey for the parameter value 2=0 and for small
values of @ consists entirely of admissible arcs passing

~ through the points-1 and 2. We mtist’not let ¢ be too
large, as otherwise the correspondiﬁgxcurve-of the family
might lie partly above the lingi= @

*

- Among the values 5%
AN .
@ I(a)=\.£ fly-+an, y'-+an)dx

of the integral &éic’irig the arcs of the faroily (6) the par-
ticular value(K0), which is the value along By, must be
a minimuf/and we have therefore the necessary COR-
dition ZX0) =0. The value of the derivative I'(0) found
by d{f“f\eiéntiating equation (7) with respect to @ and then .
_ séiting ¢=0, is ‘
~O®) - I’f0)=f {frtfyn'bz
\ 3 . ', . )
where f, and f, are the partial derivatives of f(y, y) with
the arguments vy, y' belonging to the minimizing arc Eu.
If we make use of the easily derived formula

nff%(ﬁpﬁ fs dx)*_’?'ﬁ_ fydo
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" and the fact that 9(x)=n(x)=0, the expression (8}
takes the form :

I’(O)‘:fﬁ{ff—f 1 dx}n’ dx .

This must vanish for every family of the form (6), ie., .
for every admissible function {x) having n(x) = nfxs) =080
and we find oursclves again in a position to make usé_p!
the fundamental lemma of page 20. From thatgdemma
it follows that - _ - ) \\

For every minimising arc Fy there musiexist a con-
stant ¢ such that the equation O

N

@ - fy= f fyds ke

holds ol every point of . O euch sub-arc of Eny where
the tangent turns contﬁ-rmaags}&ffbe st hove
e _
(10) im&‘ Efy’=f3' .
& 3
The last equation may be readily deduced from equa-
tion (9) by @ifferentiation, since on a sub-arc of Ep
where the ¥ahgent turns continuously the function f, is
continupus and the integral in (9) has the derivative f;.
’Qﬁ}‘équation (10) is the famous differential equation
’dgc‘mced by Euler in 1744 and called after him Euler’s
,odifferential equation? Iits solutions have been named
\™ extremals because they are the only curves which can
- give the integral 7 a maximum or g minimum, ie., an
extreme value, We shall in the f
the term extremal only to
have continuously turning
second derivatives ¥{x).

ollowing pages apply
those solutions y(x) which
tangents and continuous
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We have not so far made any assumption concerning
the cxistence of a sccond derivative ¥(x) along our
minimizing arc. When there is one. however, we can

" carry out the differentiations indicated in equation (10}
and obtain '

d . \
E;:fy —=fy=fyyy "tfyyy ' fy=0 Ao
- . &\NAD

.o L O) -
from which it follows that along a minimizing arc with 2’

second derivative y”(x) we have A
' _ ¢ LV
d O
d;(f"_}’ify’) =3"’(fy_fy'y3”__'fy'y’J'”) =0
| N
and hence also N\

~~ N/

- (1) / ‘yﬁ’y'=const§ﬁﬁ

The reasoning by meansoi which equation (11) has
been derived is valid nog.oily for the particular integrand
function f(v, y) = (142)3/(y—a)t of the brachisto-
chrone problem {:a'léo for an arbitrary function f(y, ¥}
of the two vasiablés y and ¥" which with its derivatives
has suitableZeontinuity properties. One can further
verily re,m;iﬂfy that the proofs of equations (9) and (10)

- hold wfjfﬁbut alteration mot only for this case but also
for £Re'still more general integral I to be studied in Chap-
etV for which the integrand is assumed to be a function
“\lx, y,9') of the three variables x, 3, 3. It s evident,
therefore, that the results of this section have great
generality and that they may be applied to a wide variety

of problems in the calculus of variations. One should
note that equation (11) cannot be expected to hold
when % occurs in the integrand function, since in the
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differentiations made to obtain it the function f was sup-
posed to contain only the variables y'and y'.

20. Application lo the brachistochrone problem. For
the special case of the brachistochrone problem the
integrand f(y, »') and its pa.rtlal derivatives are readily

found to be Ke \

1+y = 1+’U’2 f yr ,'\
F V( —ap V= a3(1+y*>

and the condition (9} of the precedmg sechoh which -
must hold along every minimizing arc Ed,c4n therefore
be expressed in the form . x~\\.

f #
]/ X 1+y2
l/l—l-y = u{ \J (y—a.)s :
The second member of t]:ns equa.tlon which we may
* denote by @(x), is a contmuous function of x since both
(y—a) and the integtai in it are continuous along .
By solving the equ“ahon for ¥’ we find that
N ‘

S r_ ——-L_

L

p "0\ }

is alst\)'Ednnnuous Turning again to the next to last

jbation with this result we see now that the second

3 B}ember o{x) of that equation has also a continuous deriv-

\ ative, since when v is continuous and has 2 continuous

) derivative the same is true of both (y—a) and the inte-

gral occurring in it. Hence 4’ in the last equation must

have a continuous derivative and we find the following
result:

For the brachistochrone problem ¢ minimizing are Fi

lying entirely below the line y=a con have no corners and
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must have continuous curvature. Analyiically staled, this
means that the derivatives v'(z), y" (%) exzst and are continu-
ous along Eis.

Since we now know that the second derivative -
y"'(x) exists along the minimizing arc we can be sure that
the equation f— 1y,  =constant deduced in the preceding
section also holds along.it. When the values of f and\
its derivative fy for the brachistochrone problem, acé

~

substituted from {12} this equation becomes R N\

i 1 m}‘
V(y —a)(14+5?) 1/2b

(13) — yfy

the value of the constant being chos@ }or convemence
in the form ]/I/Zb \

The curves which satisfy ,the d.tﬂerentlal equation
{13) may be found in the customa,ry manner by solving
the equation for y' =dy/d» and separating the variables,
but we shall find themasmore easily if we profit by the
experience of cthepsvand introduce a new yariable
defined by the eguation

IS, . sin %
(14) NO Y =—tang=—yr oy ]
From, the differential equation. (13) it follows then, with
ﬂm%p of some simple trigonometry, that along a
'mlmmtzmg arc E; we must have

PR

N\ N y-a=m=2b cos? §=b(1+cos ),

dx_dxdy 2 ¥
In dyd =2b cos 5 5(1+cos “). ,,

x=g-+b(u+sin u) .
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where the last equation is found from the next to last
by an integration and e is the new constant so introduced.

It will be shown in the next scction that curves whicl
satisfy the first and third of these equations arc the
cycloids described in the following theorem:

A curve down which a particle, stavied witl the initial

velocity v ab the poini 1, will fall in the shoriest time 10, {L'\@\
second point 2 is mecessarily an arc having equalions af vie

7

f{}'fm . . ”" N
(13) g—a=b(u—tsin ), 3=-a=b{1—l—cos.ni\.{

These represent the locus of @ point ﬁxxe(\on the circum-
ference of a circle of radius b as the cirdlérolls on the lower
side of the line y=a=y—v/2g Such a curve is called
g cyeledd. ' R\ O
21. Cydoids. The factythat the equations (13)
represent a cycloid of thethind described in the theorem
is caslhy proved. Fof let a circle of radius b begin to
. ¢ \ roll on the line y=a at
Kb _ the point whose co-ordi-
' nates are {(¢, a), as shown
in Figure 13. After o
~& . turn through an angle of
,§~‘ Fre. 13 » radians the point of
A\ tangency is at a distance
#bu trom (¢, a), and the pomt which was the Jowest in
V" the circle has rotated to the point (%, ). The values
of # and ¥ may now be readily calculated in terms of %
from the figure, and they are found to be those given by
ecuations (13).
The fact that the curve of quickest descent must be a
cycloid is the famous result discovered by James and '

2 &
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John Bernoulli in 1697 and announced at approximatcly
the same time by a number of other mathematicians,
The cycloid and its remarkable properties had been the
subject of much study in the seventeenth century.
Huygens (1629-93} in '
particular had shown
that the evolute of a
cycloid CC’ shown i
Tigure 14 is a seccond
eycloid of exactly the
same size situated in the
position which is dotted
in the figure, and further
that the iime of descent }
“of a particle starting at rest at(the point C and fall-
ing along the cvcloid to the l()\ﬁizet;t point B is the same
no matter what the positipitel the starting-point C' on
the cyclold arc may bet® We know from the string
property of an evol e proved on page 32 of the last
chapter, that if agfcndulum of length 4} is so suspended
at A that the ‘sﬁing is compelled to wrap itself around
the dotted eydlite, then the pendulum bob will oscillate
On an are:CC’ of the cycloid. From the isochronous
propegtyto! Huygens it follows that the period of oscil-
’la’gi\&\i'vill be the same no matter how great o how smali
_the amplitude of the oscillation from C to C' may be.
=\ “This has been considered a very important discovery
N/ for the clockmaker, though one rarely finds apparatus
on his mantel which is built upon this principle. '
These and other properties of the cycloid were well
known before the end of the seventeenth century. That
the cycloid should also be the solution of the brachisto-




$4 . THE BRACHISTOCHRONE PROBLEM

chrone problem was regarded with wonder and admira-
tion by the Bernoulli brothers. Somcwhat freely trans-
lated the comment of John was “With justice we admire
Huvgens because he first discovered that a heavy particle
falls on a cycloid in the same time always, no matter
what the starting-point may be. But you will be petri-
fied with astonishment when I say that cxactly this same\"
cycloid, the tautochrone of Huyacna is the brachisto:
chrone which:we are seeking.” And with rhetoncaﬁv
sustained enthusiasm James remarks “Thus ior this
curve, ‘which has been investigated by so mdny mathe-

maticians that apparently nothing furthes eéncerning it

could remain to be discovered, we ﬁnd\a hew property,
as it were an indication of its desir@\that no obligation
might be incurred to future centuyies but that it might
attain the pinnacle of perféction at the end of the pre-

‘sent one at whose beginning {ts' birth was celebrated and

among whose researcheg” there have fallen to its lot the
discovery of all of its Jnensurable properties and many
other beautiful characteristics.”

At the presént time our mathematics is usually less.
emotionally»expressed, but in thought at least we can
share the7picasure of the brothers in their interesting
dlSCOVQ’l’.y It is clear when we think intuitively about
they b\achlstochrone that the straight line could hardly

:h@ve been expected to be the curve of quickest descent

%

yBecause it is evident that a partlcle should fall more

rapidly on a curve which begins more steeply and imparts
a higher velocity at the beginning of the fall. But just
what degree of initial steepness is desirable in order to

avoid too gradual a slope near the end of the fall could
hardly have been foreseen.



THE CYCLOID THROUGH TWO POINTS 55

22. The unique cycloid through two points. We have
seen in the preceding section that the minimizing arc
which we are seeking must be one of the cycloids gener-

"ated by rolling a circle on the lower side of the line y=a,

but we have so far had no assurance that it is always pos-

sible to find such an arc joining two arbitrarily selected A
points 1 and 2. Unless we can prove that these points \
can be so joined we cannot be sure that there is such'a.”
thing as a curve of quickest descent. The questioh is

not one which can be neglected, as will appéar ‘more
clearly in the problem of the determination ofastirface of
revolution of minimum area to be studied imthe next chap-

ter. For that problem two points 1and.2 can easily be
selected in such relative positions that there isno minimiz-

ing arc joining them and expresgil{ie in the form y=v(x).

For the brachistochrone problétn it happens fortunately,
however, that we can establish the following theorem:

Through every pair {;f points 1 and 2 below the line
v=q, and not in the shae veriical, there passes one and bud
one cycloid generated by @ cirdle rolling on e lower side of
that line. O '

We may always interchange the numbering of the
points_¥~gnd 2 if necessary so that we Have %>
Whepahy =1, so that the points 1 and 2 are in the same
vertieal line the curve of quickest descent from one to
~Xhe other is the straight-line segment joining them, as -

N\ /we shall see in a later section. . '
Analytically the problem before us is the determina-
tion of four valucs a, &, th, #z, satisfying theiour equations

-tl'ﬁ) a—a=">5(w-sin 1) , ag—a=>b{m-5in o) o
' -y —a=b{1+cos #) , ’ yg—-a,=l;(1+cos )
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The first two of these impose the condition that the
cycloid shall pass through the point 1 for the parameter
value #, and the last two have a similar mcaning for s
and the point 2. The problem of showing that these:
cquations have solutions a, d, 41, #2 has been successtully
discussed analytically -by scveral writers® We shail
here convince ourselves that there is one and but one 'se\f' ¢
of solutions (g, b, s, #s) of the equations (16), or in other
words that there is a unique cycloid of the falnﬂfy:"t’ISJ
passing through the points 1 and 2, by a_gdofetrical
argument due to Schwarz which is an extemsion of one
givgl{\fbr the special
cagevwhen m=0 by
Mbhc brothers Ber-
Cnoulli themselves.

- In the first place

Fro. 15 let us draw an arbi-

2\ trary one of the
cycloids (15) and iplersect it by a line 12" parallel to
the straight line §dining 1 with 2, as shown in Figure 15.
1fwe move the'line 1’2, keeping it always parallel to 12,
from the pogition L to the tangent position L, the ratio
of the segment 0’1’ to the segment 12' increases from
zerouLg Difinity and passes once only through the value of
tp?'boTTESPOHding ratio of 0 1 to 1 2. "In the position
:\’"";h’i‘?h gives the equality of thesc ratios the lengths of
01 and 172" are not necessarily equal respectively te
those of 0 1 and 1 2. By changing the valuc of &, how-
ever, the cycloid (135) can be expanded or contracted into
another similar to itself and having the same center, and
the new segments 01" and 12" corresponding to 0'1’
and 12" will have the same ratio as before. If the value
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of b is properly chosen the segments 01" and 172" will
be exactly equal to ¢ 1and 1 2¢ Changing the value of g
merely slides the cycloid from 1ight to left, or vice versa,
along the line y=a, so that by making a suitable selection
of ¢ the points of 1" and 2" can be made to coincide with 1
and 2, and the validity of our theorem is established.
3. The construction of e field. In their study of\"
the problems of the calculus of variations the mathe-
maticians of the eighteenth and early nineteenth cen-
turies did not distinguish clearly between sets o condi-
tions which are necessary for a minimum, afd those which
are sufficient to actually insure a minj;rj&ni. The result’
was that for a long period after thedissovery of each new
necessary condition on the mininizing arc the students
of the subject were satisfied tthat they had complete
solutions of their problems{® Weierstrass was the first
to point out the desirability of a sufficiency proof. In
the decade precedimng“ 1879, during which he lectured
frequently on thealculus of variations at the University
of Berlin, he di&vered 4 NEeW NECessary condition, and
he was ahlesto prove that this condition with the three
previously known were sufficient for a minimum. It 38
true thatslight alterations must be made in the necessary
_C(?Il:}fions, like the one which we have seen on page 4
“\.f(;;t the minimum of a function f(x), in order that they °
~\Jmay also be sufficient. _
For the particular case of the brachistochrone problem
we have seen that the minimizing arc must be a cycloid,
and that there is a unique cycloid joining the points 1 and
2, but we do not kiow as yet that this cycloid will always
“be a curve of quickest descent. In the problem of finding
the shortest distance from a fixed point 1 to a curve,
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studied on page 30 and following pages, the solution was
necessarily a straight line’ normal to the curve, but it
was also necessary that the point 1 should not lie farther
away from the curve than the center of curvature on this
normal. May it not be, in the case of the brachisto-

chrone, that on the cycloid arc joining 1 with 2 there is ag

critical pomt 3 associated with 1 beyond which the
minimizing property of the arc no longer holdsf"'fhe
answer in this case is no, though we shall see in Chapters
IV and V that in.general such a point is to B& éxpected.
To make sure of our answer a sufficiency proof is neces-
sary, and in this section we are to échss one of the
important steps in the prool, the qon struction of what
is called a field of extremals.

Let us consider the partlcuiar txtremal arc Fy. of our
problem joining the pointg{ts and 2. It is necessarily
one of the cycloids of the™amily (15) characterized by
two special values gof B of the constants g, 6. If we
keep ¢ =a, fixed a ((Ie:tt b vary the resulting one-parameter
family of invertqg\cycloid arches

A7) s—pb(utsinw),  y—a=b(14cos u)

"\'\ (—rSusmT; O<b<ao)

wﬂl'\EaW a common center (ao, o). On two different

_'cyclou:ls of the family corresponding to the parameter
(Jalues &, and & the same value of the variable # defines
" two points (%, w) and {x, ) whose co- -ordinates satisly
the equations

Eoam b y—a b

xo‘—aﬂ_bﬂ ’ ‘yu_"*t-l“f‘_o ’ )
These equations mean geometrically that on all the radii
through the center (as. o) the two cycloids cut off seg-

N\
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mentis which are proportional to & and b,. The cycloids
are therefore similar figures).the one corresponding to the
value & being formed -
from 'the arc E. cor-
responding to b by
stretching it along the
Fro. 16 . radii through the cenz{ \)
ter {g, a) into a new
curve whose radii are #/bp times as long as those of.E;él"

A region of the planc which is simply coveted by a
one-parameter family of extremals is calledNe field of
extremals or simply a field. The argument just made -
shows that for our brachistochrong problem the hulf-
plane > q is such a ficld, simply eovered by the one-
parameter [amily of concentric yeloids (17). Analyti-
cally this is cquivalent to sawing that for each point
(,9) in the ficld the equations (17) are satisfied by one
and but onc pair of val@es b, # which we may denote by
b, v), wl(x, 9. T,héélop’e at the point (x, y) of the -
éxtremal of the field through that point is found from

equation (14).t01 have the valuc
N\

(18 e —tan ™
3 \,\ o2, 9) tan

(x, 5)
A& _ 2. e
and Ct%“ function p(x,v) so defined is called the slope

Judirtion of the ficld. - '

\\ . Tn ovder to carry through the operations of the suc-
ceeding scetions we should convince ourselves that the
functions b(x, v), u(x,y), p(x,y) describéd above as
‘belonging to the field are continuous and have continuous
derivatives, The proofs that they have such propertics
are given in the next scction which the reader may omit
if he is willing to take results of this sort for granted.
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94. Properties of the field functions. If we can prove
that the function #{x, ¥) of the last section is continuous
and “has continuous derivatives then the same will be
true of the functions -

o H=—tan DB g g

i4-cos # A o
+ oA

obtained from (18) and the sccond of the cquations (17)
The denominator in the expression for 6{x, ¥) is dgffércnt :
from zero since on the cycloid arches of the field¥¢ have
always —w<u<+wx. Let us therefore conflntrate our
attention upon u(x, ¥). N

For the determination of #(x, y) {ii\jb\équations (17

give by division the relation O
(19) £—ay u—]—qmw ‘
' y—u H—cosu

which has the form g{as y) k(u) If we change x and
¥y to x4+-Ax and y+ {and denote by A the change thus
caused in # we ﬁnd _teadily

_ (x—f—Ax, y+Ay) g{x vy =h{u4 Au) ~k(z)
which with jthe help of Taylor’s formula becomes
. xt\w
(203 , : - gebatgAy=hAu

wh\e the derivatives g,, g, have the arguments x-+6Ax,
‘ \y—I-SAy, and f, the argument #-4-0An, with 0<0<{, as
“provided by Taylor’s formula. The derivative kb is
readily found to have the value

u u
_2+2 cos utu sin u 1+2 tan 2
b= sinu_
(1+-cos u) o
cos? =

2
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_ which is not less than uhity on the cycloids of the field

since on them we have always —(7/2)<#/2<w/2.
Henee we may solve equation (20) for Aw and find

(21} An=5% Ax+52 Ay
kﬂ £

which shows that Ax approaches zero with Az and Ay

and hence that the function #(x, ¥} is continuous.
To find the partial derivative uz we set Ay=0."in
equation (21) and evaluate the limit of the guotient

Aw/Ax as Ax approaches zero. A similar pmjséss gives

#y, and the results are easily seen to be

2 (%, ¥} ' _gy(x;i?} ¢

Uy ™ h‘»ﬂ(ﬂ) 2! y—"m) ot

These functions are cont'muous.iirx and v since #{(x, ¥)

is continuous. ) >
The functions #(x, v)«&nd b(x, y) are also continuous
at each point (x, ) og"thé'bo'undary 4 =a of the field dis-

tinet from (o, a). 0" order to prove this we note first .

that the va,lué\'\('a; 5 involved in our discussion all
satisfy the ifegualities —w Su =T, < b< o indicated
just aftertle equations (17). Consider then the neigh-
borhogsbéf ’points (u, b) satisfying the inequality

A Ve w) (b <e ,

~Where ¢ is arbitrary and (o, bo) = (=7, by) 1s a pair
“Jwhose corresponding point (xs, yo) by means of equation

(17) is on the line y=q; and let 8 be the minimum ‘dis-
tance from the point (%, o) to the points (x, ¥) defined
by values (u, b) outside of this neighborhood. The
points (x, y) satisfying the- inequality

Vie—m) '+ (y—y* <

A
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and lying on or below the Iine ¥ = a all have values u(x, v),
b(x, ¥) corresponding to them which lie in the e-neighbor-
hood described above, since no (%, §) outside this neigh-
bothood can correspond to a point (x, y) whose distance
from (x, %) is less than 8. It follows that %(x, y) and

' B(x, y) are continuous at (w, ys) since, as just shown, we.

may make (u, b) lie in arbitrarily small e-neighborhedds®
of {w, b)) by taking (x, ¥) sufficiently near to EIN

A similar argument shows that b(x, y) ha&tjlé"limit
zeto at (x, ¥) =(ao, a); and when (x, 3) app&éches this
center along a curve one may prove by mbdns of equation

© (19) that the HEmit of «(x, y} is the unighe’solution of the

equation AN
dz_u-tsin g
dy 1+cos w™

where dz/dy is the recipyeésif of the slope of the curve of
approach at the point (a, o).

25. Two impb({a{u auxiliory formulas. In order to
discuss further thé fainimizing properties of our cycloids .
we shall need‘t\i}) formulas which are analogous to the
formulas {I)'and (8) which were developed for straight-
line segngents on pages 25 and 26 of the last chapter. If
a seg:m@g}li;' Ess of a cycloid varies so that its end-points
de%{ib'e two curves C and D, as shown in Figure 17,

"t.']zlen it is possible ‘to find a formula for the differential
“yof the value of the integral T taken along the moving

segment, and a formula expressing the difference of the
values of I at two positions of the segment. -
The equations _
Q2) w=a(t)+b(:)(u+sinu) , y=a-+5()(1+cos u)
(ws) Sz u(8))
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,\(24) IEw= ) Vy—a du du=uV'2|

w\.\ 7
4

TWO IMPORTANT FORMULAS . 03

define a one-parameter family of cycloid segments Ey
when a, b, i3, #4 are functions of a parameter { as indicated
in the ecquations, If : '
{ varies, the end-points
3 and 4 of this scg-
ment describe the two
curves C and D whose
equations in paramet-
ric form with ¢ as in-
dependent variable are
found by substituting
(4} and u,(#), respec-
tively, in the equations
(22). These curves
and two of the c¢ycloid scgments }mnmg them are shown
“ia Figure 17,

If we notice that alongeach of our cycloids the rela-
tions

(1er 17

_ —sin N - 2 '
N P e’ TP T Treosw
29) ' \\ i dx
——a==‘b{1—}—cos ), . —'--:b(l-]-cos %} .

'\ X

hold, theh’the value of the integral I taken along the

pﬁl'lk"‘hr arc Fu is readily found to be

Hy Ill_l_p.z dx =

and its differential is evidently expressible in terms of
db, dus, du,. . We could calculate de and these three
differentials from the four equations two for the curve
C and two for D, deduced from (22) by substituting the
-two functions u@(z) and (8 and differentiating, It is
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easier, however, to note that when # is a function of ¢,
“as well as ¢ and b, the equations (22) and (23) give

dx=da-+ (s+sin w)db+5(14cos w)du ,
dy= (1-4-cos u)db—b sin u du ,

dvbpdy _detudtdbdy_da 4o ',.\:\
Vy—a 4 1*1-1>2 V' 2b TV N\

Hence we have from (24) the following importan.tfr’é'éult:
If @ cycloid segment By varies so that iis_end-points 3
and 4 describe simullaneously two curves C and B, as shown
in Figure 17, then the value of tke mtegrQL o taken along
Esy has the dzﬁ'erentwi
dx—f—‘g Ei'v

25
= l/g,'—a. Vibp®is

Al the poinis 3 and 4 the i ﬂgre_ntmﬂs dx, dy in this exfres-
sion are those belongingto C and D, while p is the slope of
the segment Fgy. o\

If the symb&@’""is now uscd to denote the integral

'..:..’ N d/r_rp d?
26 \ I*=
(26) \\ Viy—av V1t

. then\ﬁ} an integration of the formu_]a (25) with respect
_ to‘t rom % to 4 we find the further result that

" The difference between the values of I at two different
powums Eyy and Egs of the variable eycloid segment, shown
w Figure 17, 35 given by the formula

(27) I(Ese) = T(Eys) =I*(Dyg) —IT*(Chs) .

The formulas (25) and (27) are the analogues for
cycloids of the formulas (7} and (8) of pages 23 and 26
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for straight lines. We shall see that they have numerous
applications in the theory of brachistochrone curves.
2. The tnvariant sniegral of the field. Consider now

the field - of concentric inverted cycloid arches simply
covering the hali-plane below the line y=a, as.described
in Section 23, page 57, and let us substitute the slope-

" function p(x, v) of the field in place of pin the integrand , (),
of the integral I* defined in equation (26). Along eadlt)
arc Cys in the field, of the iype described on page 2:1'~£i’1;td
having cquations 2
(28) e, oy GSISHRO
the integral I* so formed has a perfectly’definite value
found by substituting the values of %, 36d%, dy irom these
equations in its integrand and intégrating with respect
totfrom 7 to ;. Through each peint of the arc Cy; there
passes a unique cycloid = 8 \ '
atc of the field inter- "\

secting also the verti-{ ' c '{“’ 2
cal line D through,the\ s %
common central “point

(an, @) of all theleycloids
of the ﬁe}‘:]]:\d‘:; shown TLc. 18
in Figuge/f8. Thetwo
' l)Oint§x\'~]:iere the particular cycloids through 3 and 3 in-
tegdeet D may be designated by 4 and 6. The equation
i (27) is then applicable, and it shows that the value 7*{Cs)
) must depend only upon the end-points 3 and 5, and not .
at all upon the form of the arc Cs joining them, since
the other three terms in the equation have this'property.
It should also be noticed that along a cycloid arc of the
field the difierentials dx and dy satisfy the cquation
dy=p dx and for such values the integrands of I* and /

&

e, 4)
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are easily secn to be identical. Hence we have the fol-

lowing theorem:

The integral T* formed with the slope function p(x, v)

_ of the field F in dis integrand tokes the same value along all

arcs in the field joining the same two end-points 3 and 5.
Furthermore along a cycloid arc Ew of the field ihe value of.
I'* is the same as that of the integral I. D

If we make use of the formulas (9) of page 26 We ﬁnd

for thc integral I* the very compact and useful e\*priesswn

2% I* cos 6 ds "‘\
@ ol

The angle & at a point (x, ). of an Qr{; 0 Cas of the field is
now the one between the tangehts to Cs and to the
extremal of the field through, (x 9, while s is the 1ength

%

. of arc measured aloncr Cas.

21, The sufficiency pxovj’ With the help of the prop-
erties of the integral T* described in the preccding
section it is now ver\y easy to prove that the time required
by a particle tﬁl\’faﬂ down a cycloid arc from a point 1
to a point 2%s shorter than that required on’every other
arc of the §¥pe (28) described on page 65 joining those two
pointsménd lying below the line y=a. The proof to be

§ sexited is in essence the one originally given by Weier-
ss in his lectures. In outward form it is somewhat

. ¢ifferent because use is made of the invariant integral
' I'* whose importance and convenienee in this connection

were first emphasized by Hilbert some thirty years after
Weierstrass had made his original demonstration.

Let Ey; be the unique cycloid arc joining the points
1 and 2 whosc existence was discussed in Section 22, page
55, According to the results of Section 23, page 57, it
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is one of the arcs of a field I of cbnc’er_:ttric’ inverted cycleid
arches simply covering the half-plane y>«. Let Cy be

an arbitrarily selected arc in F, also joining the points

1 and 2, and having equations of the parametric form
(28). Since the integral I* formed with the slope-

function p(x; ¥) of the field has the same value as [ along ¢

the cycloid arc Ey of the field, and since it has furthex

_this same value on all arcs whatsoever in F ]ommgl w1t]1

2, 1t follows that
I(F)=I *(Em) I *(Cu)

o'\’

Hence with the help of the expressions (%} and (29) for
I and I* the difference between ths }*ﬂlues of I on the

. arcs (s and Fo, 1s seen to be

. that we surely ham:

N

\‘;

Ny 5] —cos §
(B0) FCw)—I{Ew)= I(Cm) I*(sz) . Viy—a ds

N

L\

This difference is e\»?enﬂy always positive or zero so” -

(Cu)2 I(F). The equality sign
can hold only 1f\os 8=1 along the arc Cu, ie., only if
Creis at ev Ry ‘point tangent to a cycloid of the ﬁeld and
consequently satisfies everywhere the equation dy==
Pz, '\)a@\ In that case, however, Ci; must coincide with
Eys, Qm:c the differential equation of the first order dy=

P“(i?? v}dx has one and but one solution through the point 1, .

Cand that ;i s Fy itself.

In connection with these results it should be noted
that we started out on page 46 to consider only admissible

arcs of the form y=y(x). In making the sufficiency

proof of the present section it has been quite as easy,

however, to allow the comparison arcs Ci to be ex--

pressed in the parametric form (28) which permits them

N
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to wander in less Testricted fashion from the point 1 to
the point 2. Our conclusions may therefore be sum-
marized in the following manner:

Let an indtial velocity =20 and two fixed poinis 1 and
2 not on the same vertical line be given. For a particle
starting at the point 1 with the inilial velocity m the curvéd )
of quickest descent from the point 1 to the point 2 mus{ e
an arc of a cycloid generated by a point fixed on ;mé, cir-
cumference of a circle rolling on the lower s*ide\oof the line
y=a, where a=y—v:/2g. There is one Jdnd but one
such cycloid, Ei,, joining 1 with 2, and theNtime of desceni
ont Eya is shorier than the time on every mﬁ[kr arc of the type
(28) joining 1 with 2 and lying belait t}ie line y=a.

The sufficiency theorem for.ctwves in the parametric
form gives a much stronger conclusmn than was demanded
in the original statement, of the probiem.

28. The case when the initial velocity is sero. We
have seen on page 4@t]1at the integrand of the integral I
becomes mﬁmtxﬁt 4 point for which y=a, and for that
reason we haxe agreed hitherto to consider only curves
Whl{:h lie eVe.r}Where below the line y=a. In so doing
we ha'v Jmfortunately excluded the interesting case
when~the particle starts from rest, since for o=0 the
vatye of a =% —/2¢ is 3 and the initial point 1 itself
Hes on the line y=a. This case may also be treated,
however with the help of results already attained and
a limiting process which seems to have been first used
by Welerstrass.

Suppose now that v =0and let Ex; be again the unique
cycloid arc joining the point 1 on the line y=aq with the
peint 2, as shown in Figure 19. Through each point 3
of an arbitrarily selected curve Cy; in the half-plane vZ o
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there passes & unique cycloid Es 'of the field F inter-
secting the vertical line D through the center (as, a) in
a point 4. The sum I{Cy)}+-7(Fs) varies continuously
as the point 3 moves from :
1 to 2 along the arc (i, P
beginning with the value
[H{Ew)+1I(Fy) and ending
at thevalueI(Cw)+HI{Ex).
Hence if we can show that
this sum does not decrease -
then F(Cp) = T (Ea}. »
To show that it is in- Kidy 19
creasing consider a second e
point 3 near to 3on the arcCr. Bj’f}leans of the formula
{27) of page 64 applied to thewast two terms of the
Cxpression )y

[HCu T (Bl — [I(Clg}ﬂ;;;kéa.;)j =I{(Cas) I (Fse) _I(Eaaj

. (ac_., L)

PR N

we see that this {}iffgrence has the value”
)
A \)Tcs.;)'f’f *(Dm) -7 *(C 33) '

Since the,¥ertical line Dy is orthogonal to the cycloids of
the ficld #he equation dx+p dy=0 holds along it'and the
fo iﬁ»}‘i‘for I* on page 64 shows that this integral van-
ishas along Dy The remaining difference I(Ca)—
LoT*{(C5) is positive or zero by the same argument which
"\ showed this to be true for the difference (30}, and zero
only when the arc Cy is coincident with @ cycloid arc of
the field #. 1f every partial arc Cy of the curve C. is
coincident with a cycloid of the field, ‘then {1, must coin-
cide with Ey,, and we see therefore that F(Cp)>I(Ew)
unless Cyy and F, arc identical.
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\™ D material deduced in the preceding sections, especially
‘the formulas (25) and (27) of page 64, enable us to
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The argument of the last few paragraphs can also

" be used in the case when m==0 if we wish Lo consider
comparison arcs which have points in common with the

line y=0.# It is furthermore appli-
P cable when the points 1 and 2 are
~ in the same vertical line E;,. In the,
latter case every point 3 of an ar D
trary curve Ciy may be joined tg 2 2 D v
a cycloid or vertical line E\Z YThe

sum F(Cy} -+ I(Ep) ingréases from

the value I(Fi) to the'walue 7(Ch)

2 as the point 3 traverges the arc C, so
Fic. 20' .- that the Vertl(ld.l\]lnc E, is in this

case the curvaof’quickest descent.
29, Tkz path of quickest descent from a point to o
curve. First necessary wndmom At the conclusion
of his now famous solutlon, of the brachistochrone prob-

" lem, -published in 1697, James Bernoulli proposed to

other ma,thema.tlmam‘, but to his brother in particular,

-a number of f Sher questions, One of them was the

problem of detenmmrg the arc down which a particle,
starting witl a given initial velocity, will fall in the short-
est. lee\from a fixed point to a fixed vertical straight
hn ”’Thls 1s a special case of the more gencral problem

termining the brachistochrone arc joining a fixed
pomt 1 to an arbitrarlly chosen fixed curve N. ‘The

find readily a solution of this problem.

Let the point 1, the curve N, and the path Ei; of
quickest descent be those shown in Figure 21, and let the
given initial ve10c1ty at the pcunt 1 again be 5. It is
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cear thal the minimizing arc Ey, must be one of the
cycloids alreacdy discussed in preceding pages, since if
it is the path of quick- :
est descent from 1 1o
the curve & it must
also be the path of
auickest descent from
1 to the intersection
peint 2. Thus we
have al once a first
necessary condition Fic. 21
on our minimizing arc, ¢
a condition which must, however, be S‘L;ép'}emented in this
case by two further properties of a¢ifferent character,
Since there is & unique cyglqi’d éenerat{ed by a circle
rolling on the lower side of the line y=a and joining 1

_ with a sccond point belows thet line, it follows that there

is a one-parameter farpilhof such cycloid arcs joining the
point 1 to the diﬁefg;nt points of the curve N The
values of the in;c\g}al 7 taken along the diffcrent mem-
bers of the fafhily must have a minimum along By if
that arc is :fg\}-jc_the curve of quickest descent, and the
dif[ercnt;{al\g)f 7 must vanish along Ep. To calculate -
th:lS\&zﬁ“e'i‘ential we apply the formula {25) of page 64
tothie one-parameter family. of cycloids joining 1 with

(¥, 'replacing the curve C of that formula by the fixed

-

point 1 and the curve D by N. We find i_;hen

dritpadys

Al =—— 2
Vyg—a V143

for the value of the diﬂ'crentiai along Eu, since E.Lt.the
point 1 the differentials dx; and dy; are both zers. Sice
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the slopes . and dya/dx. of the curves Fip and N at their
intersection point 2 must make this expression vanish,
we may summatrize the conditions so far found for our
minimizing arc as follows:

For a particle slariing al the point 1 with the inihial
velocity v the path of quickest descent from 1 to a curve N\
is necessarily an arc Ey of a cycloid generated by a ottt
fixed on the circumference of a circle rolling on theNower
side of the line y=y1—vi/2¢. The path Ern mulshyluriher-
more be cul ab right angles by the curve N dl;.\tkeir inler-
section point 2, \

30. The envelope theorem and the aw’;;ﬁégue of Jacobi’s
condition. For the cycloids of\(the brachistochrone
problem which we are studying, thére is a theorer: which
corresponds in a very intemgﬁtjg way to the well-known
string property of the gvg:slllte of a curve described on
page 32 of the last chapter. To deduce this property
we make use of the fact, which will be proved in Section
33 for a more genetal case, that the curve N has adjoining

~ Ep a one-pax; er family of our cycloid arcs each ‘of
* which, like-E, is cut at right angles by the curve N.
This famfij} may have an envelope G as shown in Figure
21. _'Q'}n the formula (27) of page 64 ths arc Ca 13
r(fp\l{icéd by Gs, and Dy by N, then the difference
between the values of [ along the two cycloids Es, Ea
\ of the family is seen to be

N
Y
) 3

I (Ebs) —rI (Esz) =]J* (N'zs) -1 *(&5) -

Along the arc Ny the integral 7* has the value zero since
the direction of & is at cach point perpendicular to the
intersecting cycloid and hence the numerator dx+ b dy
of the integrand of /* vanishes identically along ¥. On
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the other hand the arc G is at each point tangent to the
corresponding cycloid, so that dy=p dx along Gs and
the value I*(Gy) is equal to I{(Gs), as we readily see from
the formula (26) for I* on page 64. The last equation
is therefore equivalent to .
(31) I(Ex) = I(Ga)+ 1 (Exs). O
This is the very remarkable analogue of the string‘p{ﬁp-
erty of the evolute mentioned above, and like that
property it is a special case of a more gengrdh theorem
associated with the integrals which we 3hall study in
Chapter V. Although a number of special cases of this
theorem have long been known, theproofs of it for more
general cases were first made byt Parboux (1842-1917) -
and Zermelo in 1894, and by Kneser in 1898 For the
special problem of this chapfer we may state this theorem
as follows: N\t
THE ENVELOPE THEOREM. Let G be the envelope of a
one-parameier faneily of cycloids E each of which is out @b
right angles by‘a\s\ume N, as shown in Figure 21 on page
71, the cyclasds’all being generated by circles rolling on the
lower sidé p}' the line y=a. Then the time required by &
particle o’ fall along the arc Ey in the figure 15 the same as
‘@Qﬁe?}uired on the composite arc Gs+Ey provided that
’ ,f}’:@ initial velocity al the point 3 is it each case
NOu=V 2g(y,—a). _
N/ This result is the interpretation in other words of
the equation (31) above. The initial velocity at the
point 3 must be as specified in the theorem since the
integrals (4) on page 45 always express the time (.)f
fall of a particle whose velocity at the altitude ¥ Is
¥=V 2g(y—a), as indicated by equation (3).
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The envelope theorem as stated above enables us to

prove without further difficulty a third necessary con-

dition which must be satisfied by the arc of quickest
descent from 1 to N. In Figure 21 the peoint 3 is shown
outside of the arc Ey. I, however, it lay between 1 and

2 then J{Ey) could not be a minimum, since in every

neighborhood of By, there would be a composite arc Eiz>
G+ Eys down which the time of fall would be the same
ag that for iz, and we could always replace Gss by‘an arc
Vs down which the time of fall would be sho:t‘er since
G 1s not one of our cycloid arcs, as it must be if it is to
furnish a minimum time of fall betwcel\\lts end-points,
To make quite sure of the statement. ’tlmt (' is not one
- of the cycloid arcs we note-that the equations

f=—tan

ko g

, a=otblutsin®) , y=a+b(l+cos )

™\
"

have only one solutignm\u; e, b when x, v, p are given,
and therefore that filere is one and but one cycloid
. through a given ‘Rbmt x, ¥) and having there the direc-
tion p. The &g Gus is tangent at cach point to a cycloid
and hence camnot be one of them.
A fupslier necessary condition on the curve Eis of quick-
Scent from a poini 1 to a cure N ds that the arc Fo
shal'?‘not have on il @ contact point with the envelope G,
skéwn in Figure 21 on page 71, of the one-parameter Jamily
of cycloid arcs which are cut at right angles by the curve N.
This necessary condition which has just been deduced
is analogous to the conditicn mentioned in the first para-
graph of this chapter as having been discovered for the
general theory by Jacobi. The orthogonality of the
arc IV to the cycloid Ey,, and the necessary condltmn on
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the position of the contact point 3 of Ep with the envel-
ope (s, correspond in a striking way to the similar con-.
- ditions described on page 33, for the problem of finding
the shortest distance from a peint to a curve. ‘An
exceptional case should be noted here as in the problem -
of shortest distances. If the envelope:G has no branch

- extending from the point 3 toward the curve N then't.hel.. Ay
proof of Jacobi’s condition cannot be made as above by > '

means of the cnvelope theorem. Other methods.._p'a:ri} _
however, be used to show that the value 7{Eq) caé\ﬁever .
be a minimum when the contact point 3 of Epwith the

envelope G lies between 1 and 2. Tt will j-'K\gf-‘ﬂei'al bea . -

minimum when the point 3 is at 1 and, thé‘envelope has
. 1o branch projecting toward the point 2. That this .
exceptional case can happen quiteifrequently is evident -
if we take for the curve N ansorthogonal trajectory to
the cycloids through the p()ih’t’ 1.. The envelope G is
_then the point 1 itself. ,T% is also provable that we can A
always expect the en\jg:“n:ﬁae.G to have a cusp at the point
3 with branches pré}'@tfi ng away from the curve N when
the radius of curyature of N has a minimum at the
point 2, \% .
31. Suffiesént conditions. The one-parameter family
of Cydt’ﬂis’drthogonal to the curve N does not simply
“coven'the whole half-plane below the line y=a.in the
sen$e that through each point of the half-plane there
\? Basses one and but one cycloid of the family, as one
readily sees by an examination of the region near the. .
envelope G in Figure 21, page 71. It is clear intuitively
from the figure, howéver, that if the point 3 lies exterior .
to the arc Fy, as indicated in the figure, then there is a
neighborhood of this arc through each point of which
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" passes a unique cycloid of the family The neighbor-
hood so covered is a field F in the sense described on
page 59. We need ultimately to have a more rigorous
proof of the existence of this field, but we may for the
present he content with the assurance given by our
interpretation of the figure. In Section 60, page 136,
there is an analytical proof of the existence of a field ;foﬁ
a more general case which completely establishes ‘the
existence of the field here needed.’ ~ON

Let Cu in Figure 21 of page 71 be an argxg\the field-
F joining the point 1 to the curve N. <The’sufficiency
proof of Section 27, page 66, when mgdified slightly
enables us to prove tha.t the value I G(ﬁ is greater than
I(Ew) except when C coincides with Ei. The integral
I* formed with the slope- funt.tloﬁ Pz, v) of the field in
its integrand has as before the'same value as I along the
ar¢ Eyj;, and has also thls same value along all other
curves in the field w1th the same end-points 1 and 2.
Consequently \

I@m\—”f*(ﬂm);I*{c,4)+:*(N4e) .

Along the, a@é"N;z the cycloids of the field are perpendicu-
lar to Avs6 that dx+p(x, y)dy=0 and T*(V,,) vanishes.
We\h"ave therefore, as before,

91 —cos #

.~:::; [(CM} I(Ew) I CM} I \CHJ__I _-173: dS.

This expression i/s always positive unless €y coincides
with Ei;, as was shown on page 67. Qur result is then
as follows: '

Let on initial velocity v,==0, o fixed point I, and a fixed
curve N be given. For a particle siarting at the point |
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with the initial velocity v, an arc Eyn of quickest descent
from 1 to the curve N, such as is shown in Figure 21, page
71, must have the following properties: :

1. It must be an arc of @ cycloid generaied by a point

fixed on the circumference of a circle rolling on the lower

side of the line y =y —vi/2g.

2. I must cut N at right angles al their intersection.
point 2, R O

3. It must not contain a contact point 3 with an erwéléjﬁe
G of o one-parameter family of such cycloids orbhogonal
lo the curve N of which it is a member. ’

For an arc Ey with these properties tkefe\\is:’a neighbor-

¢\

N\

hood F such that the time of descent op, Bypis shorter than

thai for every other arc in F joining I Wik N.

1t is understood that the statéments in this theorem
and their proofs must be mOp:drﬁéd somewhat in case the
envelope &7 of the family off@ycloids orthogonal to N has
no branch at 3 projcctiﬁgmtoward the curve N.. It is
provable that in tha"tkase the point of contact 3 may
coincide with 1 anﬁ&fﬁm) still be a minimum,

Tf the curyé ¥ is a vertical straight line, as in the
query propaseft’by James Bernoulli mentioned on page
70, then {hé family of cycloids orthogonal to N is a con-
centri;:}{amily with no envelope G, such as is shown in
Figurs 19 of page 69, and the field F is the whole half-
plafic y>a. There is alwdys in this case an arc Ey sat-

Jstying the three requircments of the theorem and it

furnishes & minimum with respect to all the curves below
the line y=~a joining 1 with N. It is clear that'the
Jacobi candition 3 of the theorem is now always salis-
fied since the family of concentric cycloids has no

- envelope,
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32. The path of ' quickest descent from o curve lo a4 point.
It is natural to expect that the problem of determining
the curve of guickest descent from a fixed curve if to
a fixed point 2 will be similar to that of the preceding
sections where the particle started at a fixed point and
fell to a fixed curve.  The criteria encountered, how cwr{ \
are quite different, the difference being duc to the fabt ™
that the line y=v-2/2g on which the Cy{_,l{ur‘
generating circles roll is no longer fixed when “thé co-
ordinate v, of the point 1is variable ona (.1_11‘\76\ thn ‘ange
himsclf at first thought that the solutionlef the problem
should be a cycloid orthogonal to the ctﬁ*ve M, probably -
because he did not specify any too\c]carly the initial
velocity v which the particle shofld*have as it leaves the
curve M. His rcasoning. was criticized by Borsda
(173399} who gave the coﬂ’ect condition on the direction
of the curve M at ity mter*;e(,tlon with the cycloid,” and
: Lagrange thercupon showced
how his own analysis could be
modified fo justify the same
result.? .
We can reduce the new
- problem at once to the pre-
ceding case by a simple geo-
metrical transformation which
shows clearly the recasons
why the old criteria no longer
Fic. 22 . apply. Let 2,20 be the given
velocity with which the par-
ticle is to start from the curve 3 shown in Figure 22
and let E;, be a particular path from M to the point 2.
‘The time of fall on every other such path Cy; is the same
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- 28 that on a path Dy obtained by moving Cy parallel to
itself until its initial point 3 fallsupon 1. i we rotate
M through an angle of 180° on the center of the straight
line joining 1 with 2 it will arrive at the position ¥ in the
figure. Every arc Cp joining M with 2 determines in -
this way an arc D joining 1 with ¥, and conversely,
and the times of fall on corresponding arcs are the same, )y
provided that the particle starts in each case with the"
initial velocity 7. Clearly the problem of this seetion
is equivalent to that of determining the path of quickest
descent from the fixed point 1 to the fixed cuﬁéN .

We know already the characteristic prapérties of the
. solution of the latter problem. A mifiniizing arc, say . -
Eu, must be a cycloid generated by} circle rolling on
the line y=4,—2/2g, and the crve N must cut Ep
orthogonally at the point 2. "Fhiy means that the original
curve M at its intersection ~p;)"fnt 1 with Ey must have a
direction perpendicular to“the tangent to Ep at 2. The
transformation which(we have made shows clearly why
the direction of .K’ﬁit‘l is determined by the direction of
- Ey at the poins2 Instead of at the point 1. S
A furthet ecessary condition on the arc Ep, corre-
sponding.fo’the condition 3 of the theorem of page 77,
is alsosreadily deducible in terms of the carve N. The.
poimtdf contact of the arc Eg, or its extension, with the
Elflﬁ‘dope G of the one-parameter family of cycloids
~Lorthogonal to N must actually lie outside this arc if Fu
\ " is to furnish a path of quickest descent from M to 2.
33. The delermination of the focal point. The point
3 where the cycloid By in Figure 21, page 71. touches the
envelope G of the family of cy{tl()ids orthogonal to the -
curve IV is called the focal point of & on E.on account of
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its analogy with the focus of a lens or of a curved mirror.
The part of the theorém of page 77, which is concerned
with the position of this focal point will not be of much
practical value unless we have an explicit method of some
sort for determining the position of the point on E. In
the following paragraphs a geometrical construction fopA
the focal point is described which can be applied tols ™
large class of problems of which- the brachistgghr?jne
problem is a special case. It is a slight modiﬁg@tiﬁh of
an interesting generalization by Dr. L. A Barhett® of
a construction which was made by Professét Mary K.
Sinclair for the problem of the surfacp\\cﬁ revolution of
minimum area. x\

To deduce this criterion we fiay take the x-axis in
the line y=a so that the equationis of the cycloids which
we wish to consider are 3%

{

~ 3

(32) x=a+b(u4\esin};), y=b(1-4-cos w).

-If the first of thq%e"e:quations were solved for # as a func-

tion of the qudtient (x—a)/b and the result substituted
in the sebonid, a single equation for the cycloids would be
foungl\~ ot the form

& (),

When the function ¢ is lelt unspecified this equation is a
more general one than that of the cycloids, but it turns
out nevertheless that for all problems of the calculus of
variations whose extremals are representable by an equa-

* tion of this form the same geometrical construction. for

the focal point can be appiied.
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To find the construction let the equation of the
curve N be given in the parametric form

x=Er),  y=ulr).
The equations which express the fact that the curve (33)
intersects N at right angles can be taken in the form

’ — . '\:\.
(38 n=b o), —ﬁ;=¢’<u), =2 L9

N

where a new variable » has been introduced to make the
analysis more convenient. The solutions of, thés# equa-
tions for v, a, b are three functions »(r), #{n)yb(r) such
that the one-parameter family of curves,: Y
' P\
(35) y=b(r)¢(x_b(c:;%2)' )
has each member intersecting £he curve N orthogonally.
According to a well-known sule of the calculus the envel-
ope G of this family can be found by setting equal to
zero the partial deriyative with respect to r of the second
nmiember of the la,sg.\ Squation. Tf in making this differ-
entiation we replace always ¢ and ¢’ by their values from
the relatiopg/=5 ¢, ¥’ =¢ which hold along the curve
(35) we\‘ﬁiﬁd the equation _ '
A ()
~br the determination of the focal point, where o’ and &’
"\ are the derivatives of ¢ and b with respect to 7, and ¥’
the derivative of ¥ with respect to =,
- " The derivatives a’ and 5 in the last equation are to
- be obtained by dillerentiating the equations (34) with
respect to r and solving the resulting equations with
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respect to?’, a’, &, 1f the intersection point of the curve
{35) with N is again denoted by 2 we may replace every-

where ¢(2), ¢'(v), ¢”(v) by their values /b, s, by,, in

terms of the ordinate ¥ of the curve (33) and its deriva-
tives-at that intersection point. We may suppose 9ir)
increasing with.r along the curve N so that from the

- second of equations (34) we have the relations ¢\ \
O
VEL =y VIH @l =nV 1+ N7
when the signs of the radicals are all positive! DWe also
recall that the radii of curvature p and sNob ¥ and the
curve (33), respectively, have the valueéw

£ }1 }
PO ok ,,j_*‘_._

EJ’ i EH [ .’ XyH
y v

With these remarks in mindQWé.rr’{é,y find without serious
difficulty from equa.tions{(:’yfi&) the derivatives

b r"
N R

7!’ ¢ N7 ,
a’=9—;£ xs—a—i—z) ——(:bz &+3’23’2)]
4 2

The CQ}lﬂlﬁién (36) for the determination of the focal
poinj:\x (‘o&,y) now becomes
~\w =L 2

Y L P pacosth
%o+ye y;_.x_l_% Yafe ¥o Sin H

where y;=tan 8, is the slope of the curve (35) at the
point 2. With the help of the well-known formulas

f=x—f—,, , n=xtyy
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for the abscissas ¢ and # of the intersections with-the
x-axis of the tangent and normal at a point (x v} of a
curve, we ind [inally the cquation

’ .‘n\

f—t p2 €08 B
(38) = End
(3 ) {—#2a 72 5in f, A
. - )
which is only another form of equation (36). O

. The last equation justifies the following geomatrigal
construction of the focal point, iflustrated in Fi 1;{111-0 2338

\ o

@ 4 Fic. 23-
We draw first the radii of curvature #;, ps of the cycloid
-and the curve ¥ at their intersection point 2, the'former

- of which is negative when calculated from the equations
of the cycloid since the derivative .’ is negative. Their
pr@jectirms, —~7s 5in B3 and py cos 8z, on o parallel to the
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' x-axis through the point 2 are the lines 42 and 25 in the

figure. The lines &4 and-m5 meet in a point 6, and the
line 62 then cuts the horizontal axis in a point  such that
the segments 5 —+# and ¢—#, are by similar triangles propor-
tional to 42 and 25. Hence according to equation (38)

the contact point of the tangent from £ to the cycloid is the )
focal point 3 of the curve N on the cycloid £. O

.'The parameter value % of this focal point of N on
the cycloid (32) is determined analytically bya simple
equatlon We have, on the cycloid, o)

gt [ s Nl
x—a ¥ 25 (2+°'?f{z}'

Hence, for the parameter valug zé:of‘t'he focal point, equa-
tion (36) gives the condltmn

P t"z 5
where &’and b'a athe values (37) determined by equations
(34). Whenhif value of the fraction —a’/2b" is known
one can re,a:c}r‘:y determine approximately the value of the

pamme:ter % at the focal point by marking on the graph
of ghe function %/2-+cot(u/2) the points where the

'g\ﬁmates are equal to —a’/28.



CHAPTER 1V

SURFACES OF REVOLUTION OF MINIMITM AREA
34, Preliminary remarks concerning the problem. The \
preblem of determining a surface of revolution of mini, O\
mum arca, like the brachistochrone problem, was one(of* -
the earlicst considered by students of the calculus *of
variations, and it is onc of those which have bégn"most
thoroughly studied. It is in many }:especté‘;.\hc most
satisfactory illustration which we have of\tiie principles
of the general theory of the calculus of Fariations in the
planc. In spite of’ the fact that\ Was proposed carly
in the eighteenth century and ‘hds been restudied at
frequent intervals since that tinie, one finds nevertheless
that new results of intérest and importance concerning
it have heen found in very'recent years.

In the fo]lowmg.pﬁges it will be shown first of all that.
a plane curve y&(x) which joins two given points and
generates by Jyotation about the z-axis a surface of
revolutiomoPininimum area, must be an arc of 2 catenary
with an, pﬁuﬁti011 of the form '

~

(1),\\" y=g[e’?+e—xi—"] :
\3 JThe shape of one of these cate-
narics is shown in Figure 24, but .
they vary considerably in appear- Fic. 24
ance. One can realizc these differ-
ences experimentally by hanging a chain on two Pe B
When the pegs are near together the chain hangs In a

83
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catenéry which ils narrow and vertical, and when the
pegs are far apart the curveis broad and flat.  The curve
in the figure is of an intermediate type.

If it is admitted that when two points 1 and 2 in
the plane are given, a minimizing curve of the form
y=x(x) joining them must be one of the catenarics (1},
then it devolves upon us at once to find out if the twa{
points can be Jjoined by such a curve. The .111alvt1ga,l ’
discussion of this problem involves computa.tlons.whlrh
will be indicated in a later section, but if we a,re ‘willing
ta forego proofs for the moment it will be easy"to dcmnba
the results geometrically, In the two- pa\'a‘mctcr family
of catenaries-(1) those which pass thyéigh the point 1

: form a g@@parameter famiiy
of curv‘és ‘such that one of
them “passes through 1 in
each dlre(.tlon and this one-
parameter family has an cn-
velope G as shown in Figure
25, " It will be proved, as may
_ also easily be inferred intui-

Fro 255 “tively from the figure, that
 when the initial slope of the
(,dtemtu}(‘}t 1 is made to increase from minus infinity
to P%s infinity the intersection of the catenary with -
théy ordinate through 2 first descends from infinity to
t‘hc point 3 and then ascends to infinity. again. When
the intersection reaches a peint 2 above the envelope
o its downward journcy it belongs to a catenary arc
which touches G betwceen 1 and 2, and when it reaches
2 going upward it belongs to a catenary having no such
contact point. We, sce readily then that every point 2
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above the envclope G is joined to. 1 by two catenaries
of the family (1) only one of which touches thé envelope
.. G; apoint 2 on G has only one catenary joining it to 1;
and a point 2 below G has none. This is a situation
very diffcrent from the corresponding one for the brachis-

- tochrone problem, where there was always a unique cy- (),
_ cloid joining two given points, and it is one of the reasonsy
why the catenary problem is so much more typical Qf.,t.]fe(‘
results which may in general be expected for pr{)f)le:i;s -
of the calculus of variations in the plane. ."‘,\\ :

The point 3 where one of the catenaries E touches -
- the envelope G, in Figure 25, is called the; point conjugate
to1on . We shall see in a later-section that if 4 is a
second such contact point on the €wvelope G, as shown.
in the figure, then the surface¥of revolution generated
by the composite arc Em-lw,G;aj‘ is always equal to that
gencrated by Fy. This is04 very interesting analogue .
of the string proper’g{ﬁf the ev.olutelof a curve, and is
~ another instance ef.the envelope theorem which . was
justified by Dagboux, Zermelo, and Kneser. By means
of it we shalldse’able to prove Jacobi’s necéssary condi-
tion which(2avs that a catenary arc Eig having on it d
Point_4~gohjugate to 1 can never furnish a surface of
revolution of minimum area. As we have hitherto seen,
'thc';problema of the two preceding chapters required
(o application of Jacobi’s necessary .condition for the -
\/ case when the two end-points of the minimizing curve
were given in advance. It was for this case, however, -
_ that Jacobi originally stated his remarkable conditjon
which distinguishes the calculus of vagiations Iin such
a striking way from the ordinary theory of maxima and
minima of functions of one or more variables.

o’
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After seeing that one of the catenaries joining 1 with
2 can never be a solution of our problem, it becomes a
matter of some importance to be able to prove that the
remaining one, Ky, does furnish a minimum of some sort.
This will be done by the method of Weierstrass which has
already been explained for the problems of the precedings/)
chapter. There is always a neighborhood of By, in Whit\:h
all other arcs joining 1 with 2 generate larger giirfaces
-of revolution than that generated by Ej, itself.{

The results which have so far been déseribed evi-
dently leave us in some doubt as to what\Bappens when
the point 2 lies on or below the enve{ﬁp} G. When 21is
on G, Jacobi’s condition says thaits the unique catenary
arc joining 1 with 2 cannot possibly furnish a minimum
surface of revolution, and when 2 is below G there is 1o
catenary of the family (1)'whatsoever joining 1 with 2.
When 2 is on or below G there is in fact no curve repre-

. sented by an equatin of the form y=4(x) which gener-
“ates a mjnimu§sﬁrface of revolution. We shall see
that the minimum surface is in this case furnished by the
broken liqe\ci:msisting of the two ordinates of the points

1 and 2.4nd the scgment of the #-axis between them. It

is called’the Goldschmidt discontinuous solution of the
problém, aiter the man who first discovered it in 1831,
Jdistontinuous bzcause its tangent turns discontinuously

. at its two corners on the x-axis. ' :

It will be proved that the Goldschmidt discontinuous
solution, like the minmimizing catenary described above,
always generates a smaller surface of revolution than
those generated by other curves joining its end-points
and lying in a sufficiently small neighborhood of it.

- When the point 2 is ahowe the envelope G both the cate-
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nary solution and the discontinuous solution are present,
and Idr. H. F. MacNeish showed in 1905 how one may
distinguish the one of them which generates the smaller
surface. Professor Mary E. Sinclair'” has proved that
the smaller one is also smaller than the surfaces of revolu-
tion generated by all other-curves of a very general type A
joining the points 1 and 2. The methods of proung( K
these statements in the following pages are somewhat
different from the ones used by these writers, bu‘t the
results established are identical with theirs. '»‘:\\

35. The proof that the minimizing arc 526" catenary,
Aswe have already noted in Chapter I, jchs}iﬁtegral which
we shall have to minimize for the problem of determining
a surface of revolution of minimum’ area is

N

f (y, ¥ )dx

where f(y, ¥) has now the valuc

@ 1€ )= 17
The curves to be ?mdlcd for this problem must all lie in
the upper hd,lf -pldne ¥20 since on an arc with portions
below the £ ax1s the value
of the m{egral I is the dif-
ferenckxaf the areas gener-
+ atediby the segments above
~ Eghd the segments below the
N/ axis, while we are wishing
to consider the sum of those . Fo. 26
areas. If an arc has seg-
ments below the x-axis it may always be replaced by one
above the axis which will generate the same surface, as 18
clear from Tlgure 26. Besides the restmctmn 320 upon
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- our curves y=y(x) we shall, as in the two prcceding ex-
amples, assume that all the curves y=y(x) considered are
continuous and have tangents which turn continuously
except possibly at a finite number of corners. Let us
call curves of this sort in the upper half- -plane admissible
CHYDES. O\

Qur problem is then to determine among 2li adniis-
sible arcs joining two given points 1 and 2 ong which
minimizes the integral I.

The necessary conditions deduced in S&tion 19,
page 47, for a minimizing a.rc of an integral with an
integrand of the form f{y, ¥") apply .w‘%—-out alteration
to our present problem. The zmmrm 1ng arcs must be
solutions of the equation

f f;dx%—t:

which for the spema,kfunctlon (2) takes the form

1/1+ y'2 f V1+y? dotc=s+tc,

where 5 18 ;he 1ength of the minimizing arc measured from
1 to thelpoint whose abscissa is x. At a point of the atc
“9>0 this equation can be solved for ¥', giving

, . V2 —{(s+c)?
and we see at once that at such a point 3’ is continuous
since ¥ and s both have this property. But if ¥’ is contin-
uous then ¥ and 5 both have continuous derivatives and

the equation (3) shows again that v must also have 2
continuous derivative. At all points above the x-axis
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our minimizing arc has therefore continuous curvature '
and no corners. o

If we know that along a mmmnzmg arc there is a
continuous derivative y” then as on page 49 Euler’s
equation has the consequence f—y’ f,-=constant, which

for the special function (2) takes the form O
(4) — 7 =p. , A
Vity? | Y

By solving this equation for 3" and integrating\wé see -
that the solutions of Euler’s equation aIso qatlsfy the
two equations .

——%_y:=dx, b log (y+\/(§) —1) =g,
V)

5
and it follows readily by soiv,mg the last one for y that
the extremals for our prohlcm are the catenaries

(5) y=2 [@4-3

We use here) a.nd in the folIowmg pa.tres the customary
symhols c/yaysk w for the hyperbolic cosine and the hyper-

" bolic SiQ”\Of u defined by the equations '
e“+e * gu—g”

\. :. chu= , sku= 3

} =bch 2.

\ NO elaborate properties of these functlons will be needed,
but it will be helpful later if we notice, while these formu-
las are before us, that each of them has the other as its
derivative.

When we know that the extremals are the catenaries
of Figure 24, page 85, we see at once that a minimizing -
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arc y=y(x) with corners is impossible since the corners
would have to be on the x- -axis, as has already been indi-
cated, and the parts of the minimizing arc above the axis
would have to be segments of catenaries which have no
points in common with the axis. We have justified,
therefore, the following conclusion: O\

If 1 ond 2 are two poinis in the half-plane y>0 Yen ~
an admissible arc y=y(x) joining them and gmsrqtmg
a surface of revolution of minimum area musl be g single
arc without corners of one of the calenaries SN

36. The me—pammeter family of ca!enarws through a
potnl. Our next step is to determine tHéfumber and the
character of the catenaries (5) whick( Iﬁss through the twa
given points 1.and 2. The plan i$ to find the equation
of the one-parameter family, «of “these catenaries passing
through the point 1, and then to determine how many of
them pass through the" second point 2. The equation

. o y=bch xl;
is the conditiop that the catenary (5) shall pass through
the poinfale/ Ttis satisfied, as one readily verifies, when
@ a.nd Bare expressed in terms of a new parameter a in

tthorm _

ﬁ) L =2
C =TT e b cha’

" and the family of catenaries through the point 1 is
therefore

) y=2t ck( i

dm) - =y(x, a) ,

where y(x, a) is simply a convenient symbol for the morc
complicated expression preceding it. '
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In deducing the properties of the one-parameter
family of catenaries through the point 1, we shall need
the first and second derivatives with respect to # and o
of the function y(x, @) defined in equation (7). Deriva-
tives with respect to. x will be denoted by primes and
with respect to a by subscripts, while the subscript 1

If we remember the formulas A3

d d , 4,
Eachu—shu, @sku-—dzu m\

mentioned above, we find readily the valfes

AV
=L T e P

a)

(8) y"-_—-sk(a'—l—x;xl Cﬁdé ; - yi=sha
L3
AL y_.l)
Ye cha,éf?y’ x'1+3’i 7

where in calculating the last derivative hyperbolic sines
and cosines 'hg'}:ré’been replaced except in ope instance by
their values.in terms of ¥, y', 31, ¥, from the first three
equa °0ﬁ§:" _ oo
Hinterms of running co-ordinates (X, ¥) the tangents

..t\ff,‘;he catenary at the points (m, 3) and (x, y) have the

equations

Y—yi=y(X—a), V—y=yX—#).
By eliminating X the co-ordinate ¥ of their point of
intersection is found to be

=__3"£1-( X +ﬂ)
Y=y Py

N

AN
will be used to designate values of ®,7, y' at the point LN \"~_

~
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so that the devivative 1, has also the value

- - Yy
(9) . yﬂ=3£W1f .

This formula justifies at once a very interesting geomet-
 rical construction for the point conjugate to 1 on a catey
nary, discovered in 1860 by Lindelsf (1827 19081
For at the point of tangency (z, ¥) of 4 curve y =¥, o)
with the envelope G of the family the depddtive 3.
must vanish, according to a well-known cm(}:m of the
calculus. The co-ordinate ¥ must be zerehind the tan-

- gents to th€eatenary at the
point 1468 ts conjugate (x. v)
must, thérefore meet on the

' x—a;ﬁé’, as shown in Figure 27,

_Bolza hus proved similarly

_ “Sthat the Lindelsf construction

{\" for the conjugate point is valid

Fia. 27 \\ ) in the more general case when

\ the extremals are represented

hy an equation’y =bp[(x~a)/b] such as that discussed
-in Scetion 3\3 page 80.1

Iti ASlear from Figure 27 and the formula (9) that

as the point (x, ¥) moves from the point 1 toward the

raccht along the catenary y—y(x e) the value of y, is at

‘ \hrst positive, and it changes sign only if (x, ¥) passes a

© point conjugate to 1. Hence the inequality y,>0 at a
value x> implies that there is no conjugate point
between 1 and (x, ¥) on the catenary, while v, <0 implies
that there is one.

The second derivatives of 3%, @} will be needed only
at points (x, y) Which are conjugate to 1 and have x>

(x, %)
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For such points we see from Figure 27 for the Lindelsf
construction that ¥ <@, ¥ >0. From the formulas (8)
wc find, then, eliminating always the difference x—x: by
means of the equation y.=0, :

Zasl -
y”=}1_2 >0, _y’;=§,§idza<0 5
L Y

(10) oy RY o <e.Y
3T (1) w(_l) ],>0_ O
S [ Y/ W A\
37. Proofs of the properiies of the famﬂy. o\f&e are
first of all interested to find out what. happeps to the
ordinate of the catenary y=y(x, 2) when # X is kept fixed

and o varies from —oo to +0. ¥ w ‘é\ﬁn_'ess this ordi- .

nate, from equation (7), in the form{))

a ”'.. t:' £ .
x-—xl) X{f‘f‘;[(—ﬁ"f" o )dm]

o . ’
SN
(cka+ = )Cka. i

[+ 4
y(x, &)= (E&‘*’ ”

we see that it appréaches +o when a approaches either

of the values 4 ,'since from the calculus rate for evalu-
ating an indétefminate form we know that as % ap-

proaches plu§ or minus infinity
NV '
A’\\w li_m-ﬂ—=lim-£*=0-
«\ chu shu
4 ..\" 3

\ Furthermore the derivative v, changes from negative

“to positive whenever it vanishes, on account of the
Property y., >0 in formulas (10) of the preceding section,
and v, can therefore vanish only once. We see that
when x>z, is fixed and « varies from —% to+ o the
ordinate 9(x, o) diminishes from +o toa minimurm and
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then'increases to 4- 20 again, since y, varies from negative
values through zero once to positive values.

Let us denote by g{x) the minimum value of the ordi-
nate y(x, o) for a fixed x. The equation y=g(x) defines a
curve which we shall presently prove to be the envelope
G of the family of catenaries. ¥rom the argument of
the preceding paragraph it follows that through a pom’t\
2 above this envelope there pass two catenaries on witich
the derivative y. has opposite signs at 2. Accordmg to

. a remark on page 94 one of these catenaries hdga point
conjugate to 1 between 1 and 2, the othernéne. Hence
we have the following theorem:

A point 2 above thetnvelope G in Fi, m% 25 af page 56 is
joined 1o 1 by two catenaries of ihe faialy y=>b chi(x—a)/b].
On one of these there is a poiid, Iconjugate io 1, on the
other none. A point 2 on the envelope G is joined lo 1
by a single catenary of the ﬁrmzly on whick 2 is conjugate
to 1. A point 2 beima: GIs joined to 1 by no catenary of
the famly, .

The value 0%3( af: which the ordinate y{x, a) has its
mmlmum for a fixed x may be denoted by a(x) and the
methodx ulte similar to those of Section 24, page 60,
we may ow that a(x) is continuous and has a continuous
deriyative, so that we have the relations

:'\'.j S g, a®))=0 , Yot youd’ =0
. g(x) =y(x, afx)) , g'{x) :yr+ylua;=y,>0 ’

o) k!
g”(x)-—*y”—i— yy:y &
T Sy y’3>0
The last of these is found by substituting the value of '
from the second and then inserting the values of the
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second derivatives of y from the equations (10). The
fourth equation shows that for x>, the curve y=g(x) is
everywhere tangent to a catenary and ascending, while
the last indicates that its curvature is everywhere posi- -
“tive, as indicated in Figure 25 on page 80.
To justify finally the form of the envelope G shown

" in the figure we must establish the further p_ropcl‘ties\' \J)
lim g(x)=0, lim g'(x}=0. A N
x=x, : =T !

xl_iffxﬂ(x)=+°° . dl:I=i1_'1E1mg"(s\:)=+t>c='.m"\a'
To prove those in the first row we notice" that as a
approaches — oo the vertex \‘\ '
(g, b)= (x!._yl -c%g?.’: 5%1;) _
of the catenary (7) approachgs the point (%, 0}, and is
joined to that point by\a line whose slope ~1/e
approaches zero. Singéthis vertex is always above the
envelope G it foll ‘g"ﬁxst that g(x), and then that g'(x),
must approach z;%) as % approaches #;. The third limit
above is evident since the slope g'(x) is positive and
_ Increases .Wiﬁl x, and g(x) must therefore approach
infirity with x. The last one is also true since at the
abs?is}@"x:xl—%/yiﬁuy/y’ of the point conjugate to
1 e a catenary the slope of the catenary, from equa-
~Hons (8) on page 93, is

T = _cha 15@),
sk(a-}- y1 Gka)nsk(a \s?zcr.+;v" "

THis approaches +w as e approziches zero through
negative values, since —cka/she approaches .
Since the envelope G is tangent to cach catenary at the
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conjugate point -it follows that g'(x) also approaches
infinity with 2.

38. Two importani auxiliory formue’as In order to
discuss further the minimizing properties of our catenaries
we might use special methods adapted to catenaries only.
as we have done previously for our straight lines and
cycloids, but it will be quite as easy to deduce such prop=
erties with the aid of two more general formul ag\wlhtich
can be applied repeatedly in the study of Oths‘r speczal
problems of the calculus of variations and\a’iso in the
more general theory of Chapter V. Thaspécial cases of
these formulas” which we have alrea@y seen are the
formulas (7) and (8) of pages 25 and\Zﬁ and the formulas
(25) and (27) of page 64. ¢

For the purpose of developmg our new equations let
us consider a one- parametel: family of extremal arcs

{11) y= y(x‘bJ (=S

- satisfying the Eule{ dlﬁ‘erentlal equatlon

$

(12) \\ "rﬁfy’ =fy

The pa:rblal denvatwe symbol is now used because there
are g,\lﬁays the two variables z and b in our equations.
If\¢y,xs, and b are all regarded as variables the value of

‘the integral 7 along an arc of the fa,rmly is a function of
“the form |

(s, 2, 5)=f iy, B), ¥'(x, 5))da .

With the help of Euler’s equatmn (12) we see that along
an extremal

or . a ’. 8
8_-.;: =1 yvh = v ?E'f y+ify = i (Fyy)
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.and the three partial derivatives of the funct10n T (a3, 204, b)
~ have therefore the values

o L |
. = 2 o . ¢ o7
21y e . Oxy fl ! - : \
Bf *x, - - { ‘ )
) =f %fy}’b"!_fy’yg}dx:fy’yﬂg ’ <\“>

in which the arguments of I and its derwatwes are Lmtier-
stood to be the values
¥, ¥ bclonging to the
family (11).

Suppose now that
the variables «x, a4, &
are fumctions a(f), x4(1),
1) of a variable ¢ so
that the end-points’ 3 \
and 4 of the cxtremals “ _
of the family (11) de\ S Fic. 28
scribe  simultandghgly '
two curves ¢ and in I‘lgure 28 whose equat.lons are
{13) ,\'n.s: .z,g{i) s y=y(xa(x),b(£))=ys(3) ’

\“‘ v=ally,  y=y(m®b®)=0) .
T he&ﬁerentmls dxs, dys and dxs, dy, along these curves
A found by attaching suitable subscripts Jordtox, .
\\ ’396 and dy in the equa.tlons I

(14) de=x'(f)dt, dy =y’dx+}’b db

From the formulas for the derivatives of I we now ﬁnd
the differential

B
1= et ¥ ot gy pae iy o £
8.1;'{ 8.13:1- ok

L1



100 SURFACES OF REVOLUTION OF MINIMUM ARLA

where the vertical bar indicates the difierence between
the values at the points 4 and 3 of the whole cxpression
on the right-hand side of the equation. With the help
of the second of the equations (14) this gives the following
important vesult: :
The vulue of the integral I laken along a one- parametet

family of extremal arcs Es whose end-points describe the =
two curves C and D shown in Figure 28 has the dz_jfen;?mal

(15) dI__f(y; ib}dx‘l' (d}' ?dx)fy (y,' P) 13 !\

where al the poinis 3 and 4 the differentiols 3, dy are those
belonging to C and D, while v and p ;;m%\tfw ordinate and
slope of E.. ~NN

We may denote hy I* the mtegra.l

*=[{f, )dxﬂdyﬂ‘) ax)fy(y, P} -

If we integrate the formula (15) between the two values
of ¢ defining the points*3 and 5 in Figure 28 we find the
fol]owmcr useful rélation between valtes of this integral
and the orlgma\[\}htegral I.

' COROLLA‘R.Y 1. For two arcs Ey and Eg of the family
of extrem@is-shown in Figure 28 the.difference of the values
of tke,\wﬁegral I is given by the formmula
(16}“ I(Eas) I(E34) "-I*(Dm) ‘"I*(Css.) .

NV Aregion F of the plane is called a field if it has asso-
,~ clated with it a one-parameter family of extremals each
intersecting a curve 2 in one point and such that through
each point (x,¥) of F there passes one and but one
extremal of the family. Figure 28 is a picture suggesting
such a field. The function (x,4) defining the slope of
the extremal of the field at a point (%, ) is called the
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slope-function of  the field. With this slope-function
substituted the integrand of the integral I* depends
only upon x, v, dx,dy, and the integral itself will have a
well-defined value on every arc Cys in F having equations

x=x(t),  y=y) (hSi1SH)

N
of the type described on page 27. Furthermore the ends -
points of Cy determine two extremal arcs Ea and\Frs
of the field, and a corresponding arc D, which a;eirélaied
to it like those in equation (16) above. Itis em&e}lt then
that the value I*(Css) depends only upon)the points 3
and 5, and not at all upon the form of the arc Ca joining
‘them, since the other three terms jequation (16) have
this property. OF

The importance of the integral I* in the calcutus. of

‘variations was first empha:siﬁed by Hilbert and it is
usually called Hilbert’s invariant integral® Its twomost
useful properties are destribed in the following corollary:

COROLLARY \F or a field F simply covered by o one-
parameter fami/l}%[ extremals all of which inbersect a fixed
curve D theMilbert integral T* formed with the sope-
function, .{(x,y) of the field has the same value on all arcs

Cw %”Ff‘m'tk the same end-points 3 and 5. Furthermore

 ondmexiremal arc of the field I * has the same value as 1.
) .\3 “The last statement foliows readily since along an
~\\extremal of the field we have dy=p dx and the integrand
of I* reduces simply to f(y, p)d=- . :

The formulas (15) and (16) are the two important
ones which were mentioned in the first paragra.ph of this
section. They remain valid in simpler forms if one of
the curves Cys-or Dis degenerates into a point, since the-n
the differentials dx, dy along that curve are zero. Itis .
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useful to notice also that if one only of the arcs of the
family (11).is an extremal then the formula (13) will still
hold at least along that particular arc.
 The results of this section, like a part of those of
Section 19, page 47, are valid for the case when the inte—
grand of the integral I is an arbitrary function f (x, v, ¥l )
of the three variables %, v, v, as well as for !ﬂteﬁr’md%ﬁk{,
those already considered in preceding pages in w k’_tch the
vatiable x is absent. The proofs for the mefe)gencral
case are word for word identical with thos¢{given above,
only we must think always of the \arm{le X as possibly
being present in the function f. ¢
39. The envelope theorem andd \/acobz s condttion.
With the help of the results of (he’ prcccdmo' scction we
may establish for the one- })1mrricter family of catenarics
“through the point 1 anothér Femarkable analogue of the
string property of the evdlute of a -curve described on
page 32. Itisa spe€ial'casc of the more general theorem
mentioned on J&ée’?;ﬁ as having been cstablished for
various casesyby Darboux, Zermelo, and Knescr in 1894
and 1898, and which will be
proved here in Section 53
of Chapter V.~ Lindclof as
carly as 1860 had discovered
© a property of catenaries
somewhat similar to the one
in which we are interested.”
THE ENVELOPE THEORFERM.
Frc. 29 - If twe calenaries Eu, By o
the family through the point I
touch the mvelape G of the famdy uf the points 4 and 3, as
- shown in Figure 29, then the areas of the surfaces of revo-
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 lution generaled by the arcs Eu+Ga and By are equdl
 This result may also be expressed by the equation .

- (16) of page 100. The family (11) of extremals is now the , O

I(Er)+H[(Gu) =I(En) .
The proof is very simple with the help of the formula

family of catenaries through the point 1, the curve C ¢f)

" the formula (16) is the fixed point 1, and the crve J’J"is_ o

" hence

the envelope G. Hence formula (16) gi\ies' ! \\
I(Ew) —I{E)=I*Ga) . \/

But at every point of the arc G wc'ﬁaxzé;@‘:—« P dx, where
p is the slope of the catenary thrgug\h that point, and

rvGor= [ 110, Pz -ty 0, D}

(1 Pdr=I1GCs). e
Il o1 |

If this value is sﬁhgfituted in the p_r'ecéding equation the
formula of the theorem is proved. :

The envé;lti;;e theorem enables us to prove with ease
for the ¢afenary problen: the necessary condition for a
minisafh which Jacobi deduced in'1837 for the general
tb@’l'\y by a very different, method. For our special case. -

s theorem is as follows: -

JACOBI'S NECFSSARY CONDETION. If @ catenary or¢ En
is {0 generate @ surface of revolution of minimum area then
the point of contact 3; shown in Figure 29, of the calenary
with the envelope G of the one-parameter fomily of caien
aries through the point 1 must nol lie on the a7 Ba.

We sce this because the arc But+Ge+tEs in Figure
29 generates the same surface area as En, and we canm
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always replace Gy by an arc Cys generating a smaller area
since Gus is not an arc of a catenary (5). To make quite
sure that {7;; can never be such a catenary arc we note
that at each point of it the equation (4) on page 91
defines a value b which is the same as the one belonging .
to the catenary tangent to G at that point. But these\)\
values vary from point to point of G, as shown by {he
second equation (6), whereas on the catenaries (§)they
must be constant, <

40. The consiruction of o field. If we had Deen study-
ing the problem of determining surfaces.of revelution of
minfmum area before the year 1837 whefy Jacobi published
his necessary condition we should¥doubtless have con-
cluded that every catenary arc joiding the points 1 and
2 generates a minimum a.regt;’f:The last theorem of the
preceding section shows that this would have been unjus-
tifiable for the arc Eys shown in Figure 29. Similarly
at the stage which we€ have now reached in our rcasoning
we might infer t%\lt‘tl’le surface of revolution generated by
a catenary argjoining 1 with 2 and having on it no conju-
gate point‘ig’slﬁaller than that furnished by every other
arc y=yQ:), joining 1 with 2. This conclusion would also
under~gome circumstances be incorrect, for while a
cafenary arc with no conjugate point on it minimizes
Jwith respect to other curves joining 1 with 2 and lying
(sufficiently near to it, there may nevertheless in some
'~ cases be curves not so near which give I a smaller value.
The only way to logical safety lies in a sufficiency proof
of some sort which will characterize more specifically for
us the minimizing properties of our arc.

In order to make a sufficiency proof after the manner
of Weierstrass it is necessary first of all to construct a
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feld of cxtremals analogous to that described in Section
23, page 57, for the brachislochrone problem. Suppose
that E, is a catenary arc having on it no point conjugate
to 1 and with the equa- :
tion

X—idq
—0 B

(17)  y=book 3

Let us tuke a point 0
~ on the catenary, as in

Tigure 30, so near to 1

that the point 3 con- AL

jugate to O by the NV

Lindelsf construction S\ Fie. 30

of page 94, is still at O

the right of 2. The tangents to the catenary at 0 and

3 meet on the x-axis a,j{a, .ﬁoint 4. The transformation

N\

O ' by

- 8) .~a>x4=-\3f,f (X—x), y=37
Stretoh}@}h{é planc along the radii through the point 4
in Sll%l“fi way that every peint (%, y) is re;ﬂaced by a
R(’ih.\ﬁ‘ (X, ¥} whose distance from 4 is b/b, times that of
~ {¥,%). By substituting the values of 2 and y from equa-
S\ tiens (18) in the equation (17) of Em we S€€ that .the
points (x, y) on that catenary are transformed inid points

(X, ¥) which satisfy the equation

{19 y="4bch %[x-—xri—b%(xr—ﬂn)] = y(a; b .
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Thisis alsoa catenary of the family y==> ck[(x—aq) /] with

the parameters ¢=xs—b(x:—0a0)/by and b. If we think

of b as variable we obtain therefore a one-parameter
family of catenary arcs containing the original catenary
Eg for the special value b=b,. Each of these arcs is

~ tangent to the two lines joining the point 4 to the points{ )
0 and 3 since each is obtained from Ey by stretching if
along the radii through the point 4. N\

We see readily that through each point (x, fhof ‘the
V-shaped region'F bounded by the two radi’i?joining 4
‘to the points 0 and 3 there passes a uniiup extremal of
our family, and it is on account of thigPsdperty that we
designate F a field of extrémals. O

41. Properties of the field fimblions. Analytically
the uniqueness of the extremaltirough a point of the
field means that for each pelitt (x, y) in F the equation
y=9{zx, b) of the extremals\of the field has a unique solu-
tion b(x,v). We ca :pmve without serious difficulty
that this function(5(x,») is continuous within and on
the boundary of “the V-shaped field F defined in the last
section, excepfiat the point 4, and that it has continuous
derivativeg\iit’the interior of the field. The same prop- -
erties 'a{(g}ﬂ:eh possessed by the slope-function p(x, ¥)
of tlﬁ\ﬁéld which is expressible analytically in terms of
b(%'9) in the form '

QO ' (%, y)=y'(x, b(x, y))
where the prime indicates the partial derivative of y(, b)
with respect to zx. o _ . '

In order to prove these statemcnts we shall need
several of the partial derivatives of the function y(x. b)
in equation (19). 1f we denote derivatives with respect
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1o # by primes, and with respect to b by subséripts, we
" find readily the formulas

=bch 1 x— x4 é(x;—ag)] =y(z,8) , .~
i b o

N\
v =gh 1 x—x.s+2(:r-4—an)] \, T - ot\t\ :
S R L
- . : \/
w=, ly—le—xy]. : “<‘

‘From the accompanying figure it is seen that‘j\;z :may be

- cxpressed 1 f; )
. expressed in the form i . _’x:\\,
. 28
}'h=3 ¥ > 4

where ¥ is the vertical
distance from the point
4 to the tangent of the .
Catenary of the freld a,t\
the point (x, y). It
clear from this syptes-
~sion that 4 (¥phishes
only whep. s.(a,o y) is on
the hoy: "d,ary of the field. -
Sippose now that (x,y) and (x—i—Ax y—}-A}’) are
l"ltili‘ror points of the field F and let b and b+A4b be the
\"\FMYPS}JOHdlng valucs of b satlsfymg the equations

y=5(e8),  yray=ylatos, bHab).

Ry subtracting the former from the latter and usmg
Taylor's formula we find y ’

(20 T Ay=yAxtyhb
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where the arguments of the derivatives v', y; are x-+fAx,
b-+0Ab with 0<8<1. By the methods used in Section
24, page 60, it follows then that b{x, ) is continuous and
has continuous first partial derivatives at the point {x, ).
When (z,) is on the boundary of F the equation
(20) does not furnish us with the same conclusions, smce~\
the derivative v, vanishes on the houndary and the egua- -
tion cannot be safely solved for the increment Ab) ~We
can prove by the method used on pages 61-62¢ however,
that b(x, y) is continuous on the boundary of: ﬁ Esewhere
than at the vertex 4, and that at 4 it has pite limit zero.
42, The sufficiency proof. The ext:re\ﬁa] ar¢ By with
which we started on page 105 and gtr?:)ﬁﬁd which the field
F was constructed, generates & surface of revolution
of smaller area than that genéraied by every other arc
Cy in the field joining the \points 1 and 2 and having
equa.t.lons AN,

(21) x-x(t),\ =yt (£1<t<1;2)

 of the type: de\ac\lbed on page 27. For along such an

arc the mtf:gral I and the Hilbert integral I7%
defined on'page 100, formed with the integrand function
f =3{(_1\'~;|§3?’2)’ of the catenary problem, have the values

,s'\\“ L] $a
N I(C12)=f YV x’“ry”‘ dt=f yds,
" 3 & L1

. _ x"I“PyI 'Sa
I (Cu)-—-[: _I/1+P2df L ¥ Cos 8ds,

where 8 is again the angle at a point of the curve Cu

* between Ciz and the extremal of the field through that

point. From the equality of /* and 7 on a catenary
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arc of the ficld, and the invariant property of I, it follows

that
[{(Ew) =I*(Ep)}=I*(Cia)

and hence that

.
HCy) —I{Esp) =I{Cn) —I*(Cy) =f y{r-—cos fds=0, o
. . s & \,,.

and it requires only a repetition of the argument’uﬁ‘eﬁ
on page 67 to show that this difference is aiwa:ys pogitive
unless Cy; coincides with Ei. _ o

We can summarize the results so far attgjned jor our
catenaties in the following theorem: &3~

An admissible arc vy =y(x) (4: £ 523@‘1:” the half-plane
v >0, foining two given points 1 argdié, wnd generating a sur-
face of revolution of mim-imum.’;ifea when rofated aboul
the x-axis, must have the p;:op:e};ties: :

1. Ti is a single orc without corners of one of the cate-

maries y=b chf(x—a)fb}

2. Tt has on gpe’point of contact with the envelope G
of the ng—j)ammegr family of these catenaries. through the -
pinel. Oy o
If Epjsian arc having these two properiies, and if Fis
one &W’V—skaped regions shown in Figure 30, page 105,
condliinng Ey. in its interior and bounded by two langenis

) E" ,f’}le catenary E which meet.on the x-axis, then the area of
;..the surface of revolution generaled by Eu is smailer ”M_”
the aren gemerated by every other arc Ci of the type (21) in

the region F and joining the points 1 and 2.
It should be noted, as for the examples of the preced-
ing chapters, that the theorem is more inclusive than was -

. originally required by our problem as stafed on page 90,
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since it holds for arcs Cyp in parametric form as well as
for admissible arcs y=y{x).

43. Solutions consisting of straight-line segmenls,
The theorems of the preceding sections show that no mini-
mizing arc representable in the form y= y{x} exists joining
the points 1 and 2 when the point 2 is on or below the,
envelope & of the one-parameter family of the catanarlts~
y="5bch{(x—a)/b} which pass through the point L \ In
the former case the one catenary joining 1 with 2does
not furnish a minimum area since it does Qot satisfy
Jacobi’s necessary condition, and in the latfer case there
is no such catenary. It is also of course impossible to
have a minimizing arc of the forrn\jl v(x) when the
points 1 and 2 are in the same verfical line, since an arc
with such an‘equation can have J;utnne point on each ordi-
nate. There still remains th,e’qu?éstion therefore as lo the
character of the mlnmuzmg ‘surfaces when the points 1
. and 2 lie in one of the positions
\ whichhave just beenmentioned.

To find an answer to this
question let us consider- first
a segment Fi, of the vertical
line through the point 1, and
an arc (pz with length / equal
to that of I, as shown in
Figire 32.  Let the points at
the distance s from 1 on Ew

and Cy, respectively, have the ordinates y and ¥. Then
the difference of the areas of the surfaces of revolution
- generated by the two arcs is Zr times the difference

7 _
I(CH)_I(ER):f Y ds— I-;y ds:f!(lf—y)a’sg 0.
) Jo 0

0— x
N\ Fi1i. 32



¢Laee of revolution generated
byCusis always greater than

W

STRAIGHT-LINE SOLUTIONS - CIIT

The cquality sign holds only if Ci coincides with Ey, -
since if C1; has a single point ¥ distinct from the corre-.
sponding point v of £y we must have ¥ >y and the inte- -

the following theorem:

“gral on the right is then surely >0. Wehave, therefore,

If o vertical straight line Eyy has dls upper md-ﬁa.i-_r’zt _

1 in conumon with en arc Crs of the same length, as shown in
Figure 32, the areas of the surface of revolution. gsnem{e,{ ‘f,\

N

by rotating Eix about the x-axis is abways less than $hef .

generated by Cys unless Cis is coincident with En. % &

‘This theorem enables us to conclude at oncethat if
the two points 1 and 2 are in the same vertieal line the
straight-line scgment joining them al‘was generates a. .

smaller surface of revolution than that generated’ by
every other arc (i, with the sameend-points, since such
an arc Ciy must be longer thai £, But we can also
deduce from it another interesting result concerning the

~ - case when the points 1 and 3 are not in the same vertical.
- Let 3and 4 be the pointson ' L

the z-axis below J{'Ehid 2, . . ' 2
respectively, as*shown  in ' '
Figurc 33. Ifan arc Cy in
the half-plghe =0 has
lcngthg%}itcr than v+ 52
ther\'tHe thcorem above
shows that arca of the sur-

i 4
Fre. 33

or equal to that generated by the broken line Lis.;g consist-
ng of the ordinates of the points 1 and 2 and the stzgmen.t.
of the x-axis which they intercept. If wetakea neighhor-

hood of this broken line, of the type shown in Figure 33: .

L
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so small that every arc (i3 in it joining # with 2 has neces-

sarily a length greater than yi+y,, then it is clear that

at least in that neighborhood the line Lyss; is @ minimizing
arc for our problem of determining a curve joining the
points 1 and 2 and generating a surface of revolution of
minimum arca. It is the Goldschmidt discontinuous
solution rteferred to on page 88 of the mtrnduutory
section of this Chapter

44, A second type of field. It i3 evident ttht‘ Lhc
V-shaped field F in which the catcnary arc f, fias been
proved to furnish a minimum is not umqul.,\iOr the two
points § and 3 can be moved slightly to theright or left
without destroying the properties ngedet for the field.

. It is not surprising, therefore, to find, that therc is a field

of a still different type in which/the’ catenary Fyy retains
its minimizing propertics. W’e can, in fact, prove the
following theorém: ™

If B is o catenary? 6f zke family y=>5chl(x—a)/8]

| having on <t no poindconjugatc fo 1 except possibly al 2,

then the surface of revolu-
‘tion which if generales 15
smaller than that gener-
ated by every other arc Cip
with equations of the fype
(21) on page 108, joining
1 with 2, and, except pos-
sibly ai 2, lying entirely
Frc. 34 : above the envelope G of
the one-parameter fumily

of catenaries through the point ! shown in Figure 34.
In order to prove this let us note in the first place
that through each point 3 above the envelope G and




A SECOND TYPE OF FIELD _ 113

© distinct from 1 there passes a unique extremal Ej; con-
taining no point of contact with G, as shown in Figure
31, The vertical straight line through 1 is now under-
stood to be included among the extremals in order to
make this statement true for every point of the field.
In the next section we shall see that the value I{(Es) of
our integral varies continuously with the point 3 and, O
approaches the value zero when 3 approaches the point ‘)
Consider now an arbitrarily selected arc Ci ‘above
the envelope G.  From the results of the last two &€etions
we know that when a point 4 of this arc is &35t chosen
~and a second point 3 of the arc afterwar splected suffi-
ciently near to it, the value I (Eﬁ-!*%l\e'xceeds I{E.)
unless the are Ei-+Ca coincides W;th 1. Sinc_e

U (Cm)—f(Eu)]—[I(Cm)—I-(,Ef,sz).] =I{Expt+Ca) 1 (Es)

it follows that as the pointy 3 traverses the arc Cre from
-~ the point 1 to the point 2 ‘the difference I{Cu) —I{Ex)
starts at the value zefo'and does not decrease, so that we
- have I (cn) Z [ ( }Qj.” )

" The equality sign can hold only when Cu coincides
with By <J@p i there is a point 3 on Cu and not on Eun
then ther{ié also a point 4 between 3 and 2 on Ci such
that Ef;\::'is distinct from both Fis and Eu, and fur-
thetmore such that 4 is the first point at which Ca
.\‘ﬁéﬂs Ew If we now take 3 sufficiently near to 4 we
\»\ “shall have J(Eu+Cs) >I(Ew) and hence the difference
I(Cy)— I{Ey) actually increases as 3 traverses Cus, S0

that I(Cyy) > I{Ey). . -

43. The continuily of the exiremal indegral. Tt is casy
to see that the value I{E) of our integral approf%h&
zero as 3 approaches the point 1. For there iS'B-l no
‘eas¢ a point conjugate to 1 on Esw and the straight-
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Kne segment L., joining 1 and 3 always Hes ina V-shaped
field for-Ins like that described in Section 40, page 104,
Hence we have [(Ew)</{Fy) and (L) evidently
approaches zero as the point 3 approaches 1.

If a point 3 of the ficld is not on the ordinate x=
. the value of the extremal intcgral along the catcnaryp,
arc Ey of the field is 0D

I(En)= f ¥z, )V Ty, @) dx . )

'\
Ny

Here y{(x, a) is the function (7) of page 82 md}ﬁning the
one-parameter family of catenaries thraugh the point 1,
and e is the single-valued function o ’xg\and ¥; satisfying
the equation v; =vy(xy, a). We ma.y’if)rove by the methods
of Section 24, page 60, that the function a(xs, vs) satisfy-
ing this equation is continuoﬂs at all points 3 in the inte-
rior and on the boundary™ of the field # which we are
considering, except those*on the line z=x,. Hence the
integral I{Ey) a]so \@,nes continuously at points 3 whth
are’not on thisgin
_ Consider ﬁn\l]y the case when the point 3 lies on the
ordinate ¥ €417 We wish to show that (%) approaches
1 (Lm W@:ﬂ the point 4 approaches 3. From the results
eding sections we know that the surface generated
%he vertical line Ly is smaller than that generated hy .
eVery other arc joining its end-points, and hence, with
) the help of- the remarks in the first paragraph of this
section, that

L) S Bt Le)sT (Lis+Lig) .
But from this result we deduce readily the inequalities

L) SHEN—HIL) S (L)~ I( L) .
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Since the first and last members approach zero as the
point 4 approaches the point 3,-it follows that the second
cxpression must do the same. . ' ST

The continuity of the integral J(Ey) as the point 3
varies on the interior and boundary of the field F, which

was assumed without proof in the reasoning of the last «
¢\

section, is thus established for all cases.

7'\
16. The absolule wmintmum. Since we know that {he’

catenary arcs Iy without contacts with G, and theﬁi)”ld—
schmidt discontinuous so- ' R
lution Lyge, in TFigure 35, ' \N%
both furnish minima with
respect to curves lying near
them, it is reasonable to ask -
whether or not one of them |}
furnishes a minirmum when (b
compared with all the aredd |
Cys Joining 1 with 2 inlthe .
half-plane 4= 0, A“n\ arc o
which has this p}ﬁ})erty is 8 6 4
said to furnigh”an abso- Fre. 35

lute minithifm for our

PTOblem\’?To answer this question we can first prove

the \fﬁi{)\i’mg slatement: )
wMlvery arc Cye distinct from L and having a povit 3 1.

o ?Yimmm wilh the envelope G, as shown in Figure 35, gener-

N\

~o/

ales ¢ larger surface of revolution thaw the Goldschmidt
Solution. '

Let 5 he the first point at which Cye has an intersec- -

tionwith G, ‘T'hen we may conclude that (Cis) 21 {Lase)-

Forwhen g point 7 onG is Suiﬁciently'near to 3 the length

of Ep-Gry is greater than yi+ys, and hence from the .

N
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theorems of pages 112 and 102, and the last paragraph
of Section 43 on page 112, we have successively

I{Cus) ZI(Ey) =I{Eg+Grs) 21 (Luss)
“The equality signs all hold only when 35 is at the point 3
and Cys coincident with L. Furthermore if we let thea

point 5 move along Cys toward the point 2 the dzﬂeren.ge .

I(Crs) T (Lisgs) = f- ¥ ds—3(¥+y3) , ~,'
&
where s 15 the length of arc measured aleng.Cis, has its
derivative ys{1—dys/dss) with respech to ss always
positive or zero since the absolute Q;:ilue of the ratio
dvs/ds; never exceeds unity, Hencé the difference is
‘never decreasing as 5 moves tqwa.rd 2 on the arc Ci, and
since it starts with a pomtw,eaor zero value when 5 is on
(7, we infer that when 5]1;13 arrived at the point 2 we
have I(Ci)—I(Liss)20. One can verify readily that
the equality sign heiﬂs only if Cyy and le are identical.
It is now also clear tha,t
When theresare fewer than two catenaries joining the

points 1 apdi2 the Goldschmidt solution always furnishes

an absolule minimum.
on in that case the point 2 is"on or below the
emr'%lope G and every curve joining 1 with 2 must inter-

.\Eett G.

QI
M
) 3

When 2 is above G the catenary Iy having no contacl

with G, and the Goldschmidl solution Lise, both furnish

minima in sufficiently small neighborhoods, and the one
which generates @ smailer area than the other surely provides
an absolute minimum,

For example, in the case when J(Ep) < I{Ly), then
I{Es) is smaller than all the valucs of [ on arcs Cu

N\
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above the envelope G, by the theorem of page 112, and
smaller than the values I{Cy) for curves nteeting G
 since for such curves I{Ei) < [ (L) =I{Cw). The afgu-
ment is quite similar for fhe other case when I{Lizp)
<I(Ew). When the two are equal then each of the arcs
Ey and Lz generates a smaller surface of revolution
than other arcs with the same end-points, ) O\
‘There is an interesting geometric criterion, first pre=y
sented by MacNeish,? for detexmining which of the xiﬁli;;;é
1{Ex) and I (L) is the smaller.  The difference bgtween
these values is o oS

I(Ex) —I{Lu)= f ahy ds— (A% -
© S\

As the point 2 moves from 1 along(afixed catenary E the
derivative y,(1 — dys/dss) of this.difference is positive since
the tangent to the catengm_y? s never vertical and the
absotute value of the derivative dys/ds: is therefore never
as great as unity on if\"When 2 is at 1 the difference
I(Eu)— (L) is¢hegative since then 1(Ew) =0; and
when 2 is on G\it is positive since [(Li) i smaller
than the value of I on every other curve intersecting G.
It follow: tixen that J{Es)=I(Lisg) for one position
only of~the point 2 on the catenary E between these
extremtes. MacNeish determined the character of the
loeus' of such points 2 by methods analogous fo those
&N Which had been used in the determination of the form of |
N the envelope G.  In terms of the parametera=a.+(x_*-9}¢1)
cha/y, the equations of the family (7) of catenares
through the point 1, on page 92, may be written

chu
(22) x=xx+6-% (w—a), yY=%_74*
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and the values of J{Ep) and I{ZLyw) in terms ol the
parameter # of the point 2 are readily found to be

Y] ’ 2
' I (Elg)= w1/ Zp f,fu:%_(c;:—la) lotshuchull,

N2
I{Lie)=30y)=4 (%1) e/ atchtu] . N

“ (\)

These two are equal when O

sutshu chu—chPu=—atshochatchea. N

This equation and the equations (22} of the catdnary arc

define the locus H of the points where FW = 7L,

MacNeish discussed the form of the curve Bl and plotted

' it from pumerical data, It

/ ¢ turns el that its shape is

. . simifar to that of the cnvel-

B £ 7 ahe'G, as shown in Tigure

/ / ::’:36. With the help of these

’ A\ curves out results for abso-

) e Iute minima may he de-
AR\ scribed as follows:

N T Wa For a point 2 above the

B 6 curve I in Figuve 36 the

N Goldschmidi discontinuous so-

lution e joining I 1o 2 generales a minimum surface of

resolilion relative to those generatad by other arcs of the 1y pe

A28 on page 108 joining the same two points and lying in @

\vsufficienily small neighborhood of Ly but the smallest sur-

face of all, the absolute minimum, is in this case furnished by

the unique catenary arc Fuy Joining 1 with 2 and having o it

no conlact poiniwith the envelope G, When 2 i5 on H the sur-

faces generaled by Ly and By, are equal in area and smaller

than those generated by other arcs Joining these fwo poinls.
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When 2 is between H and G the calenary arc furiishes o
relative minimum and the Goldschmidt solution ihe absolute
minimum. When 2 is on or below G the Goldschmidt solution
s the only minimizing arc joining 1 with 2 and it furnishes
an absolute minimum. o '
47. Soap films. 1t has already been remarked on .
page 7, that the problem of determining the form of 2
soap Ailm stretched between two circles whose planes{ /)
are parallel and whose centers are on & common a.xas\ '
perpendicular to their planes, is equivalent. to thatyof
determining a curve joining two given points 'a.g(géherat—- '
ing a surface of revolution of minimum aréas) We have
seen that at least when the circles are sufficiently near
to each other the meridian curve of ;:Qxéﬁurf_ace must be
a catenary. If the right-hand ciréieun Figure 2, page-7,
is moved slowly' away from the'othier in the direction of
their common axis the meridian catenary takes sug-
cessive positions in the orgé'-,b'arameter family of catenary
arcs through the poifit 1. When a certain point has
been reached the isu\‘face becomes unstable. Without
any further mo\gézﬁent of the circles it will gradua_lly
contract and.s[:parate int6 two portions which retire into
the planeshdf/the circles to form two circular disks, the
Goldscimidt discontinuous solution -of our ‘minimum
. NV . .

_problém. The moment at which this separation takes

 pldee'is the one when the point 2 reaches in its borizontal

- (\Movement the envelope G of the family of catenaries -
) through the point 1. _ o
One might expect that the instability would eccur at
the instant when 2 reaches the locus & on which the
catenary solution and the Goldschmidt solution gIve

equal areas. At that point, however. the catenoid sur-
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face is still 2 minfmum with respect to other surfaces in
its immediate neighborhood stretched between the two
circles, and the only effect of a slight disturbance is to
cause it to escillate back into its original position.

The equations which detcrmine the relative position
of the two circles at the moment of instability are tran-
scendental in cha,racter but it is not difficult to sccum\
numerical data of sufficient aceuracy for COmpclHSOIlszth
those obtained by experiment. If we use the para.meter
% again the envelope G is the locus of the chntcs (%)
determined by the threc equations

23) Eox_#—a Yy _chuy _{s{; o cha
' v cha’ ¥ “ha’ ‘I\w‘k;z sha’

The first of these is in another form the equation defining
#, the second is obtalncd £rt)m equation (7), page 92;
~3%  and the last is equiva-
lent to the condition
=0 along G and is ob-
T L L tained by equating to
zero the expression for
Yo given on page 93
: after inserting the values
u,.ﬂfftﬁ‘“ ¥ =shu,y{=sho and the
\\Qﬁl«, ’ values of # and v from
) the first two of the equa-
tions (23). Ii we plot

carefully the function w— ¢hu/shu, then for every negative

value @ a positive value # can be measured satisfying the

third equation {23), as shown in Figure 37. The corre-

sponding point (¢, %) defined by the equations
E="w—a"lrha, n=chulcha
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describes the particular envelope G whichis plotted to
scale in Figure 25, page 86, for the point (%, y1) =(0,.1).
In order to find approximately, in a more general case,
the difference x—a, of the abscissas of 1 and-its con-
jugate (x, ¥} we have only to find the value £'corre-
sponding to the value p=y/%
on the graph of G in Figure 25
and then set x—axy =%y, Still
greater accuracy could be
secured if desired by using
methods of approximation in
the solution of equations (23) :
for #, a, x—x, when 3 and ¥ 1.4
are given. . N/
Professor Mary E. Sinclair > .
has studied in a very interestt™S"
ing way a modification of s
“soap-film problem.® If an’ in-
verted funnel is set s\a larger
funnel and moist&@divith s0ap
solution, then when the smaller
one is wit];dl:ﬁv{?h in the direc-
tion of itguxis a surface of revo- S
lution, 4s) formed whose cross- Fre. 38
sectioh “with those of the fun-
,I{t%]é;is shown in Figure 38. Itisa catenoid one pf whose
\”\ bounding circles is always the greatest: circle of the
smaller funnel, while the other slides up or down the
inner surface of the larger funnel as the distance l?etween
" the two funnels is alteted. At their intersection the
soap film and the larger funnel meet at right angles. As
the surface is elongated by enlarging thC distance hetween

R
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-the two funnels a certain point is reached when the ayr
face becomes unstable and separates as before.
The analytical problem corrssponding te this expert
ment is that of finding among the curves joining a given
-point2toa given straight line L a particular one which when
rotated about the axis OX will generate a minimum area,,
The curve must in the first place be a catenary ()rthoggr{d‘i@
to the straight line L. The one-parameter family of
catenarics orthogonal to L has an cenvelope G #oUghing
the particular catenary arc Ey; in a point 3  Which must
not lie between 1 and 2. Miss Sinclair Jctermined the
distance between the two funnels at thQ whoment when
the point 2 reaches the envelope G an\i (erified by actual
measurements that the film becofgs unstable when that
distance is reached. The agrqr;ment between her calcu-
lated and experimental resnlts was surprisingly close.
48. T'he case of one varmlﬁk end-potni.  The soap-film
problem which has jusg “Been described is a special case
of the more general\problem of determining among the -
admissible arcs h}th join a fixed point 1 to a fixed curve ¥
one which venemtes a minimum surface of revolution.
The analysis which en-
ables us to solve this
problem is similar to
that of Sections 29-31,
pages 70-77, concern-
ing the determination
of a path of quickest
descent from & point
to a curve, and it will
be sufficiently intelligible if presented more concisely.
The minimizing arc £ in Figure 39 must in the first’

Fic. 30
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place furnish a minimum surface. of revolution when

) 2

compared with other arcs joining the points 1 and 2,

since every such arc also joins 1 with N Hence it must

be a cutenary arc without corners.

It must furthermore be cut at right angles by N. For
there is a one-parameter family of arcs y=y{x, 8}, joining’
1 with ¥ and containing Fj, for a special parameter value’
b="bs, as will be shown explicitly in the next paragraph:
The values of 7 taken along the members of this. ﬁumlv
have a differential along £y which is given by th‘&formula
(15) of page 100 when the curve C of thdt formula is
replaced by the point 1 and D by N attention being

2N

paid to the remark on page 102 th.cixexplalns that the

formula is still applicable when s the only extremal
in the family. For the speéial" integrand function
J=y(14+4")t of this chapter the formula (15) just re-

" ferred to gives the value®
, , dx - ‘dy |*
df—fdxﬂc{y oy Py Vit

for the different 1(1 of I alonrr Ey. Smce this must )

vanish whe F(Ey) is a minimum it foltows that ‘the

dirf-‘(?tiorl,\df:;p‘: dy of N is necessarily perpendicular to the -

direction*d:9" of Ey at the point 2. _
show that there is a one-parameter family of curves
*4’(:‘6 %) of the kind used in the last paragraph SUDPOSE
}hat N has parametric equations of the forms
x=g(d), y=h)
and that it intersects Ep at the point 2 for the parameter

Value by, If the equation of Epis y= =+(x) then the family -

y= ()+"’“’25)y(g“’”(x z) =358,
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contains Ey, for the parameter value d=1Js, and all of its
arcs pass through the point 1 for x=x; and intersect N
for x=g{b). '

We may construct a one-parameter family of the
catenaries y=4 ck[(x—@)/b] cutting N at right angles, by
the method described on page 81 for curves of the family\\
y=bg[(x—a)/b]. The point 3 where the envelope G
of this family touches the extension.of E. in Flguré 39
is called the focal point of N on Ei. The formbla’(16)
on page 100 justifies as on page 73 an envelap@ theorem
which says that I{(Gss) -1 (Ege) = I{ Ey) fobgvery position
of the point § on G, and by means of,jt/we also prove
that the focal point 3 can never he ;m the arc Ey if B
is to furnish a minimum.

By an argument similar to that of Section 31 on page
73, we show that when the focal point 3 does not lie
on Ey; the one-parameter? famﬂy of catenaries orthogonal
to N simply covers a field near E,;, and we prove that in
this field £y, does aetually furnish a miniraum. We have
then the following results for this problem:

Let a fixed point 1 and a fixed curve N be given. An
admmible drt Ey, as shown in Figure 39, page 122,
whickh g@w'mtes a mintmum surface of revolution as com-
parediih those generated by other admissible arcs joining
1 w'\i‘ N, must have the following properties:

" 1. IE is a calengry of the family y=5b ch[{x—a)/b].

2. It is cut af right angles by the curve N at their inler-
seclion point 2.

3. It has on it 1o contact point with an envelope G of
@ one-parameter family of catenavies orthogonal lo the

-curve N and conlaining it as a member.

If an arc By joins 1 to N and has these properties then
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it has a neighborhood F suck that the surface of revolution
generated by Fug 15 smaller than that generated by every
other arc Ci of the type (21) on page 108 lying in F and
joining N with 1. '

The theorem needs alteration, as has been true for |
similar theorems on pages 33 and 77, in the exceptional,
case when the envelopc G has no pranch projecting.’y -
toward 2 at its contact point 3 with the curve Fu. | QO

49. The geometiical construction for the fogal point.

The family of cateharies y=>b ck[(x—-a)fb]quc}ﬁch‘fur—
nishes the minimizing arcs for the problef\of determin--
ing surfaces of revolution of minimum ates, is a special
casc of the family y=0bp{(x —a)/ b]o(f {aurves considered
. in Section 33, page 79. We mysl\expect then that the
" geometric construction there described for the focal point
of a curve will again be applié’aﬁie. Tt is not necessary to
repeat the analysis whichded to that construction, but it
may be of interest tgrhave the figure for the extremals of
thepresent chapgqr,\
since it has an'ap- g
pearance quite dif-
ferent from‘that for
the (‘;}ngfds.
~Let N in Figure
d0\ be the curve .
(Y Wwhose focal point-
< on the catenary E - L
. Intersecting it at
right angles at the
point 2 is to be determined. Draw the radii of curvature
pand 7 of N and E at the point 2.” Join the end-points
4 and 5 of their projections on a parallel to the x-axis
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through 2 to the intersections £ and #;, respectively, with
the x-axis-of the tangent and normal to the catenary E
. at the point 2, The lines so drawn meet in a point 6,

which when joined to 2 determines the point £ on the |

x-axis. - The tangent to the catenary from ¢ determines

the focal point 3 of N on E. Evidently from this con-(),

struction we have £\

Ny

'ﬂrz_t 3-2 & “'}«’.

Tk K9
which is the characteristic property of theé\focal point
specified by equation (38) of page 83;:1\\ 4

The construction just given ig«a~slight modification
of that of Professor Mary E. Sindlaif, who was the first
persont to devise a geometric bfistruction for a focal

" point of a curve NV on a catgnary analogous to the Lin-
deltf construction for theltenjugate point.

50. Furiher remarks concerning the catenary probiem.
One should not inférythat the discussion which has been
given here of thé\}oap film problems leading to surfaces
of revolution{ i minimum area is at all complete.

" Besides the‘problems mentioned above Professor Sin-

- clair has:\studled that of determlmng the form and sta-

bilify of a soap film joining two circles C; and C, and

hamng a central disk D of film, as shown in Figure 41.

~This is a configuration often met experimentally in en-

") “deavoring to get the simpler catenoid surfuce described

. onpage 7, and her discussion of it is of the same interest-
ing type as that for the funnel problem of page 121.
If the circles C, and C; are solid disks with a hole in
_one of them through which air can be blown into the
space inclosed by the film and the disks, then the prob-
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Iem suggested is that of deterimining the form of a s0ap -
film which incloses with the disks a given amount of air,
This is analytically the prob--
lem of determining among the
curves joining two given
points, and generating solids
of revolution of given volume
when rotated around the -
- axis, one which at the same
time generates a surface of
revolution of minimum area.
‘The curves which may give a
minimum or a maximum for
this problem are well known.,
- They are the so-called elastic 3 '
curves generated by the fo'ci'};':‘“
~of ellipses and hyperholas®
* which 1oll upon the maxis.
The ones gcnerate@‘\by the c
foci of ellipses Sgee “usually
called unduloids, and those
generatcd, ~bzy hyperbolas
Hodmd-‘ '\’I he analysis ef R
thes C - : Fic. 41 - . oA
E\Ul\feb is more-comp
than that of the catenary, and no elementary
"(ﬁ%ﬂmd of constructing the conjugate and focal ponts,
“\“Such as has been described ahove for cycloids and cate—
naties, has ever heen discovered.




CHAPTER V
A-MORE GENERAL-THEORY
51.. Formulation of the problem. We have been conf )
sidering in the preceding chapters several problem§ of
the calculus of variations whose integrals to bemdini-
mized were all special cases of the more gene%{integral

w - I= f o s S

in which the integrand is allowed $g ‘eontain the variable
x as well as the variables ¥ and &» which have hitherto
been present. It is clear thafif 'we can find character-
istic properties of mlmrmzmg arcs for this integral we
shall have results apphcable not only to the problems
already considered bt also to a much larger variety of
maximum and re{inimum questions of the calculus of
variations.

In the study of this more general problem we shal
need to 'h\aye a glass of so-called admissible arcs of the form

D\O" y=3®)  (mSwrsm)

.{iri}ach of which the integral I has a well-defined value,
(\and our problem will then he to find among all the
). admissible arcs joining two given points 1 and 2 one

which minimizes the integral I,

The definition of the class of admissible arcs may be
made in many ways, each of which gives rise to a distinct
problem of thé calculus of variations. For a special
problem the properties defining the class will in general

128 -
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be in part necessitated by the geometrical or mechanical
character of the problem itsclf, and in part free to be
chosen with a large degree of arbitratiness. An example
of property of the former type is the restriction for the

brachistochrone problem that the curves considered shall .

all lie below the line y=ag, since on arcs above that line

the integral expressing the time of descent has no means.$

ing. On the other hand we frequently find it convenient
to make the arbitrary restriction that our curves shall all

- lie in a small neighborhood of a particular onﬁzﬁn}hose

minimizing properties we are investigating; Jud’we may
specify with considerable freedom the pQ&tinuity prop-
ertics of the class of curves in which &y&/wish to seek a

niinimizing arc, always remembering, that on each of the .
arcs of our class the integral I miust have a well-defined

value. N

In order to make a deﬁmtion of a class of admis-
sible arcs which will b¢'generally applicable let us first
assume that there iﬁﬁ}egi(m R of sets of values (x, ¥, ¥)

in which the integrand function f(z, ¥, ¥) of the integral .

(1) is continugy$ and has continuous derivatives of as
many orders‘as may be needed in our theory: 1.?01- all
ordinary Purposes it will be sufficient if it has continuous
N & w il including those of
partifiderivatives at least up to and inclu ing O,
thefourth order. The sets of values (x, ¥, ') interior to

;i*he'region R may for convenience be designated as

o/

) @dmissible sets. An arc (2) will now be called an admis-

sthie arc if it is continuous and has a continuously turn-

ing tangent except possibly at a finite number of corners,

and if the sets of values (%, ¥(%), y’(:.y_:)) on it are all
admissible according to the definition just given. =9
an admissible arc the interval 2w, can always be subdi-

For

N

\A
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vided into a number of partial intervals on each of which
y(x) is continuous and has a continuous derivative. Ata
value x where the curve has a corner the derivative v'(x)
has two values which we may denote by ¥'(x—0) ‘and
¥'(x+40), corresponding to the backward and forward
slopes of the curve, respectively. O\

52. A summary of results. In the statement of the -
' following conditions we shall need to use the funi‘:;t.ifan

E(x, %3 Y=flz, 9, V)~f(z,5, y)—(¥'— ’)f{ﬁ‘v ¥, %)

which was introduced by Weierstrass and shich is called
the Weierstrass E-function. Its form j is'edsy to remem-
ber if we notice that it is f(x, y, V) mmus the first two
terms of the expansion of this, functlon by Taylor’s
formula in powers of (¥'— AT

There.are in all four condmOns which will be proved
in later sections to be necessa,ry for a minimum and
which are stated here~without proof in order that the
reader may have i iny ﬁ}ivant:e some idea of the purposes of
this chapter. “{Qsh the underbtandmg that the equatlon
of the mlmmizmg arc By is y= y(x) the first three of
these are as\follows

L qur\e‘z:ery minimizing arc Fyp there exists a constant

s k"?k’ét the equation
O\

’(3} Ty(e, y(), ¥'(2)) —ffy(x, y(x), y'{x)ydrt-c

}zoﬁds identically on En® An immediate consequence 0f
this equation i5 that on each arc of Exy having o continuousty
turning tangent Euler’s differential equation

@ =t

must also be sabisfied.
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II (Wederstrass). At every element (x, ¥,9) of a .
" minimizing arc Fy ihs cmdszwn S

E(x, 5,9, T)zo

must be salisfied for every admissible set (x,y, Y*) differemt .

from (x, v, 4"}, <\,
IIT (Legendre). Al every: element (x ¥,y ’) of a m;m-\
mizing arc Ey, {he condition . A\
fy P (TJ ¥, 3”) 0 m'\\

must be satisfied. N\
The solutions y=y(x) of EuleF’s differential equation
{4) which are admissible arcs and havé\furthermore con-
tinuous first and second denvatwcs are called extremals '
and we shall sce that - K\
through a fixed point \
I there passes in gen-
eral a one-parameter ¢ ;
family of such cur Ve ’\1 ' ' >
If such a family ‘I\éﬁ . Fre. 42.
an envelope () as
shown in Flgure 42, then the contact point 3 of an extre- .
mal arc Fl\z ‘of the family with the- envelope is called a .
point S\mjugate to 1 on Ew. : :
W' shall sec that there is an envelope theorem for
;the'gcncml theory considered in this chapter which has
\ V4 special qase the theorem describéd on page- 102 for
 Catenaries. It says that the value of the integral [ .
taken along the composite arc Eu+Gy in the figure i
- equal to its value along the arc Ei; for all positions of the
point 4 preceding 3 on G.  With the help of this theorem.
we shall prove the following fourth necessa,ry concht:lon

L]
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v (.f acobi). On a minimizing extremal arc Fue with
Jorw £ 0 everyuhere on it there can be no point 3 conjugale to

1 between I and 2.

The order of discovery of these conditions was 1,
HI, IV, II with the exception that Fuler’s differential
equation was not originally deduced by means of the
equation (3). Yt happens, however, that Legendre’s,
condition is a very easy consequence of that of Weber=
strass, and for this reason the order indicatcd,bff the
Roman numbers is more convenient for us??l:hafn the
historical one, ,w}\

Weierstrass made a further very impoptant contribu-

, tion to the theory of the calculus oof:ﬁr’iations\_whcn he

proved that certain scts of conditions are sufficient to
insure the minimizing property 0¥ a particular arc. Up
Lo his time students of the,ﬂ’ibory seem to have tacitly
assumed, after the discovely of cach new Necessary con-

- dition, that the conditfo’ﬁs then known were sufficient

for a minimum. "THeMact that new conditions had ap-
peared one after @hother was apparently conclusive evi-
dence to \Veh;réﬁass that a sufficiency proof was needed.
" Let us with him de-
finc a field, as in the
preceding chapters,
to be a region F of
-the planc which has
associated with it a
_ one-parameter fam-
Tic. 43 ily of extremal arcs
cach of which inter-
sects once a curve D) and which have the further prop-
crty that through each point (x, y) of F there passes
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one and but one extremal of the family. Such a field is
illustrated in Figure 43. Let us furthermore designate
the function p(x, y) defining the slope of the extremal of
the field at a point (x,y) as the slopefunction of the field.
The following theorem, which will be proved later, is then
fundamental for all of the sufficiency proofs: .
THE FUNDAMENTAL SUFFICIENCY THEOREM. Lef By

be an extremal arc of a field F such that ot eack point ,'(:i:,\y)
of F the inequalily A&

N
at ¥ i

(5) o 3, $53), )20 20"

kolds for every admissible set (, 3,9 dzfﬁ:%}eiw from {x, ¥, p).
Then I(Ey) is a minimum in KXon, more explicitly, the

tnequality T (Eu) £I{Cn) 5 sat;iéﬁéd for every admissible
arc Cy tn F joining the pq&g&fs’"l‘ and 2. If the equalily
sign is excluded in the hypothesis (5) then I (Ew)<I(Cr)
unless Cs coincides with Pas, and the minimum is a so-called
proper one. K _

For a number-of special problems this theorem is
very powerful. ~ When we sought to find the arc of
shortest\Jédgth joining two points 1 and 2, for example,
we found”that the straight line Ep joining them is an
extrémal of a field which consists of the whole plane
r;(ﬁ‘efed by the straight lines parallel to Er, and one may

oSreadily verify that the condition (5) for the integrand
“\\ function of that problem holds without the equality
sign in such a field. Similarly a cycloid arc Ey for the
brachistochrone problem is an extremal of a field con-
sisting of the half-plane below the line y =a covered by the
cycloids concentric with Ey, and the stronger ‘condition

(5) holds also in that case. For each of these problems,

i
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then, an extremal arc E;; will furnish a minimum in a
very large field.

‘In general we cannot hope to find such extensive
fields surrounding a given extremal, as is indicated by
the catenary problem, but we shall see that an arc £
which has suitable properties will at least be an extres"

* introduced by Bolza let us designate by IT, III’ the

- conditions II, IT1 with the equality sign fﬂccludcd Jand

by IV’ the condition IV when strengthened- ’bo exclude
the possibility of a conjugate point at the gnd- -point 2
as well as between 1 and 2 on By, . It Wtﬁbe proved in a
later section that for an extremal are\Eu which satisfies
the conditions I, IID’, IV’ there is always some neighbor-
hood F whichis a ﬁeld simply covered by a one-parameter
family of extremals ha.vmg Fi» as a member of the

- family, N\

The value I{Ey,) is szu,d ta be a weak relative minimum
if there is a nelghbb}lood R’ of the values (x, y, 3"} on
Ly such that tlﬁs\\nequahty I{Ew) £ I{Cy) is true, not

_ necessar_ﬂy fox gﬂl admissible arcs Cys, but at least for all
. those whosefelements (x, y, ) lie in R.  With the help

of t]le"sﬁ'ﬁic‘iency theorem stated above and the ficld )

described in the last paragraph we shall be able to prove
thdt.an arc Fw» which satisfies the conditions I, 1117, IV’

:wwﬂl surely make the value 7(%;,) at lcast a weaL rchtm

W

) migimum. This result will be cstablished by replacing

the original region R by R’ and choosing &’ so small that
every admissible arc with respect to it is necessarily in
the field F, and furthermore so small that the condition
(5) of the theorem holds in F in its stronger form with
respect to all of the sets {(x, y, y") in R,

9,

mal arc of a field of limited extent. Using a notatien -
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Following Bolza again let us denote by Il the con-
dition II strengthened to hold not only for elements

(x,, ") on Eubut also for all such elements in a neigh--

borhood of those on Eu. " It will be proved that for an
arc which satisfies the conditions I, 1y, 117, TV’ the field
F about Fys, existent as & result of the conditions I, r,

IV, can be so restricted in size that the stronger condif )

tion (5) holds in it with respect to the sets (x,v,¥) ipl;he
region R itself. The value I{Ew) will therchrc”éga.in
be a minimum in F, and it is called a st::o&g”relqﬁw
minimum because it s effective with respecf yto all ad-
missible comparison CUrves C whose elentents (x, %, %)

have their points (%, y) in a sma}!‘\h(?ighbbrhood F of
those on Ep. No restrictions grej in this case imposed .

upon the slopes y' except those Hue to the definition of
the original région K. ~ '

There is a simp‘ler‘jéb‘t' of conditions for a strong
relative minimum in{the case when the region R has the
property that th&“&l‘ement (x, v,y is always in R when-
ever y’ lies betfeen vy and ¥z and (x, v, ') and (% 9, '2)
arc both inJR: Let III, be the condition 111 strength-
ened tochotd for all admissible elements {x, v, y) having
thci,t{ix}iflts_(x, y) in a neighborhood of those on Eu- It

ilise proved that 11, is a consequence of Iily" when

R bas the property described above, and it follows at.’

‘once from the result stated in the last paragraph that -

the conditions I, 1Ty, IV are also sufficient to insure a
strong relative minimum.

So far the remarks made in this section have applied
only to minima and not to maxima. 1t will be evident
in later sections, however, that the conditions for a mini-

mut  heconte analogous ones for a maximum if the ine-

Q)
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quality signs in the conditions are changed in sense
wherever they occur. © We can also modify our problem
by secking to find a minimizing or maximizing arc in
the class of admissible arcs joining a fixed point and a
fixed curve, or two fixed curves, instead of two fixed
- points. The results for these two problems are described( ")
- somewhat briefly in Sections 63-65 below. O
53. The first necessary condition and two fundqm}e?ztal
formulas. The proof which is required for,/the first
necessary condition need not be repeated hcm:,\since it is
precisely that of Section 19, page 47. ‘Fhe‘presence of
the variable x in the integrand of our:il?tégral does not
interfere in any way with the validity oi the deduction
there made of the equations O -

_ > 3

© _fy’=£f7 de-f:,’?:; %fy"—fy=0

on a minimizing arc\ An extremal is by definition an

admissible arc with continuous first and second deriva-

tives satisfying these equations, and along it the Euler

equation canglways be written, for the general problem of

this chqgit}f, in the form

(AN
A
"It is a difierential equation of the second order since the
derivative " is the highest which it contains.

The arguments. of Section 38, page 98, are also

‘applicable at once to the genera) integral which we are
now considering. If an arc Ey, varies so that its end-

d
afy‘ —fy =fy’x+f!'yy’+fy‘y’3’” ~/y=0.
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points describe simultaneously two curves C and D then
the differential of the value of the integral I along it is

(8)  @I{Ea)=[(x, y, p)dx+(dy—p dx)fy(x, v, )

at every position in which it is an extremal. This result ™

holds also at every position in which it satisfies the eqa-
tions (6), as a glance at the proof in Section 38 w;ﬂ show.
The differentials dx, dy in the last formula arq‘those of
the curves C and D at the points 3 and 4\of Figure 28

~on page 99, and the values to be mserQed for ¢ in the

difference indicated are the slopes o(Em at these two

points,
If the variable arc Ey is always an extremal, then the

difference between the va.lu«e,s of I on the arcs Eu and
Es of Figure 28 is D '

@ I{Ese)— I (&;) I*(Dye} —I*(Cw),
where T¥ is the@bert mtegral

(10y I *—j:{f(x, y, plda+{dy—p da)fy(x, », P)}

PG
. I the §Upe-funct10n plx, y) of a ﬁeld such as was de-

scribed on page 101 is substituted for p in the integrand

ofthis integral, then along all admissible arcs in the
\Mield having the same end-points the values of I* are the

same, as was proved readily on that page with the help
of the formula (9) just given. Furthcrmore on an ex-
tremal arc of the ficld the value of I* is the same as that

of I since along such an arc dy = d.

The formulas (8) and (9) and the properties of the
Hilbert integral will be of frequent service for the generaI

N
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theory, as they were for the more speciul problems of
the preceding chapters,

54. The mnecessary conditions of Weierstrass and
Fegendre. In order to prove Weierstrass’ necessary con-
dition let us select arhitrarily a point 3 on our minimizing
arc Ep, and a second point 4 of this arc so near 1o 3 that{y
there is no corner of Ep between them. Through he ’

' point 3 we may pass an
arbitrary curgd @ with
an equatioff_n =T (x},
and the foed point 4 can
be joiped 1o a movable

_ Flo 44 pcgm.t‘ H on C T.f):‘/ 4 one-

; ' paramcter [amily of arcs

Fyy containing the are Iy ag §L~l;{él11bcr when the point 5
is in the position 3. We sl}’aliasee presently that -ch a
family can very edsily b constructed. If the inizgral
I(Ep) is to he a minimum then it is clear that as the
point § moves al@{f from the point 3 the intf-;gfa.l_

C

(1) K@ E)= | fla, ¥, V)dx+I(Es)
must ot decresse from the initial value / () which it
hasgeblen 5 is at the point 3. Evidently at the point 3

’jt\}iz;;'diﬁerential of this integral with respect to x; must not

\\be negative.

The differential of the term J(#;:) in the expression
(11}, at the position Es, is given by the formula (8) of
the preceding section when the curve D of that formula
is replaced by the fixed point 4 at which dag= 3. =0
For the formula (&) holds along cvery arc of the fumily
in question which satisfics the equations (5), and we
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know already that our minimizing arc must satisf y these
equations. Since the derivative of the first integral

in the expression (11) with respect to its upper limit is
the value of its integrand at that limit, it follows that
when 5 is at 3 we have for the differential of 7(Cas+Fse)
the value at the point 3 of the guantity \)

'\
N

fw, ¥, Y)ds—f(z, 3, ¥ Yv—(@y—9'dn)fy (%, 3, 30

The differentials in this expression belong té’?tﬁe arc €
and satisfy the equation dy="Y¥’dx, and et'the point 3 -
the ordinates of C and E are equal, so’#hit the differen-
tial of (11) is also expressible in tha'fo

(12) [f(x: ¥ Y!) _f(x’ »ny ’) (Y}_y )f? (x) 3’: }dxta u

Since this differential mnst be positive or zero for an
arbitrarily selected gomt 3 and arc C through it, ie,
for every element{(%y, y") on Ep and every adn:uss;ble
element (zx, %, 7%y we have justified the necessary con-
dition 1T of Weierstrass on page 131

The coefiicient of dx in the formula (12) is the Weler—
strass @'\functxon which with the help of Taylor’s formula -
maENe expressed in the form

¢

AN B, 3, o, TY=KE =y Yy 3, YY)
A% where 0<f<1. If we let ¥’ approach 3 we find fromr
" this formula the necessary condition III of Legendre, on
page-131, as an unmedtate corollary of the conditionII of
Weierstrass.

Tf one wishes to be more convincingly assured of the
poésibih'ty of constructing a family of arcs Ey of the type
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used in the foregoing proof of Weierstrass’ condition one
‘has only to consider the equation

y=3@+ DDy i, )

=@

For x =2, these arcs all pass throu gh the point 4, and fof )
#=a they intersect the curve C. For a=2; the famiily -
contains the extremal arc Ey since at the intersegtion
point 3 of Ey and*C we have ¥ (x) — y(xs) =07and the-
- equation of the family reduces to the equa,t“ic;}l y=v{x)
of the arc Hy, ) \

~ For an element (r, 3, v'(x—0)) at axk%r’ner of a mini-

- mizing arc the proof just given for Weajerstrass’ necessary
condition does niot apply, since there is always a corner
between this element and a point 4 following it on Fy.
But one can readily modifySthe proof so that it makes
use of a point 4 preceding the corner and attains the
result stated in the condition for the element in question.

. 55, The envelo ;za:"k\eorem and Jacobi’s condition. The
formula \ N
ABee)~I(Es))=I*(Dig) ~I*(Css)

’ ANS

of page A37 enables us to prove readily the envelope
theoterfiymentioned on page 131 which is a generalization
of the'one proved fora family of catenaries on page 102.
L& Ei and Ei be two extremals of a one-parameter
\ I\amﬂy through the point 1, touching an envelope G of
" the family at their end-points 4 and 3, as shown in Figure
42, page 131, When we replace the arc Cys of the formula
above by the fixed point 1, and the arc Dy by G, we

find the equation

H(Eg)~1(E) =T*(Gy) .



THE ENVELOPE THEOREM T41

Furthermore the differentials dx, dy at a point of the -
envelope G satisfy the equation dy=2 dx with the slope

 p of the extremal tangent to G at that point, and it follows
that the value of the Hilbert integral

I *=f%f(x, y, p)dx+(dy—p d)fy @, 3, D)} A
PR\
along Gy is the same as that of . Hence we hays, .
THE ENVELOPE THEOREM. Lot Eu and Eljs.fbe" o -
members of a one-parameter family of extremajstirough the
point 1, touching an envelope G of the famdghal their end-
points 4 and 3, as shown in Figure 424 spuge 131, Then
the values of the integral I along e orcs Eu, En, G
satisfy the relation O

I(Ew)+1(@eY=T(En)

for every position of the point 4 preceding 3 on G.
" To prove Jacobils.condition IV on page 132 we notice
that according*to. the envelope theorem the value of I-
along the cbmposite arc Eyi+Gu+En in Figure 42 is
always the $ame as its value along Ep. But Ggisnotan
extrem@hyand can be replaced ‘therefore by an arc Cs
aiving T a smaller value. In every neighborhood of Eis
there is consequently an arc Ey+-Cut-Eax giving I 2
m: “$maller value than Eu, and I (Eys) cannot be a minimum
\ . To make sure that Gis 15 not an extremal arc we may
" make use of a well-known property of -the second order
differential equation (7}, page 136, namely, that when
such an equation can be solved for the derivative 3!
there is one and but one solution of it through an arbi-
trarily selected inifial point and direction (s, v, ¥2)-
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But we know that equation {7) is solvable for ¥ near
the arc Fy since- the hypothesis of Jacobi's condition
requires fyy to be different from zero along that are,
- Hence if Gu were an extremal it would Necessarily coin-
cide with Ey, in which ease all of the cxtremal arcs of
Lhe family through the point 1 would by the same prop<{y,
erty be tangent to and coincide with Ei. There woid -
then be no one-parameter family such as the tbe@a‘r\ém
SUpPOoSEs, 7\
This proof of Jacobi’s necessary condition is,\a\dequa.te '
in many of the examples to which one maywish to apply
it, but it has the defect which we have moted before in a
number of cases. If the envelope G-has no branch pro-
Jecting from the point 3 toward the "point 1 on the arc
Ey then the .proof does not hold: This may happen
‘when the cnvelope has a cuspyas shown in Figure 43, or
when it degenerates into alpoint. The great circles on a
sphere are examples of@set of extrémals of a problem in
the calculus of._varia‘jfién's for which the cnvelope G is in
every case a single fixed point. We shall see in Section
62, page 161, dproof of the fact that in no casc can the
contact poirt<d lic between 1 and 2 if the arc E is to
> ' . furnish a minimum, no
matter what the form of
“the envelope may be.
If the point 3 coincides
, with 2 and the envelope
Fic. 43 (ris a fixed point or has
the form shown in Fig-
ure 45, then it is provable that the arc By may furnish
a minimum, but it never can do so if the envelope has a
ranch projecting from 2 toward the point 1.
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56. Further consequences af the ﬁrst necessary con-
dilion. The equation :

Jy= i-f ydz+e

- of the necessary condition I on page 130 has two corol-.

oA

larics which are frequently useful in assisting to character:™
ize a minimizing arc. In the first place the sqctrnd
member of this equation is a continuous function ‘of =
at every point of the arc Ey; and the first meipbér must
therefore also be continuous, so that we have’

COROLLARY 1. THE WEIERSTRASS-ERDAANN CORNER
CONDITION. At a corner (x,y) of a me{(umzzmg arc Eu the
condition

. fs"(x) ¥ y’(x"':’)) =fgf(x;’)’, y'(x+0))
must hold , ™

This condition at a. ‘pmnt (x, v) frequently requires
y'(x—0} and ¥'(x+0) o be identical so that at such a
point a minimizixg’g,\arc can have no corners. It will
always require ‘this identity if the sets (x, v, ¥} with 3’
between v’ (& ) and ¥'(x-+0) are all admissible 4nd the
derivative\fyy is everywhere different from zero, since
then tl\{\ﬁrst derivative f, varies monotonically with 3’
and\cannot take the sime value twice. The criterion of
the, corollary has an interesting application in a second

\p'roof of Jacobi’s condition which will be given in Section
62, page 161.

We have so far made no assumption concerning the
-existence of a second derivative ¥/(x) along our minimiz-
ingarc. If anarchasa continuous second derivative then
Euler’s equation along it can be expressed in the form

fy’x+fy y}’ +fy 1] 3” ~fy=
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.\‘ 3

“where 0<#<1. In this expression the first member
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-~ indicated in equation (7) on page 136. The following

corollary of the first equation of this section contains a
criterion which for many problems enables us to prove
that a minimizing arc must have a continuous second
derivative and hence be an extremal satisfying the last
equation. - _ O\

CoroiLary 2. HILBERT'S DIFFERENTIABILITY CON-
DITION. Near @ poini on a minimizsing arc Fy wherefy'y is
different from zero the arc always has a continybps sccond
derivative y''(x).26 S

To prove this let %, ¥,9") be a set olwalues on Fy;
at which fy is different-from zero, andysuppose further
that (x4-Ax, v+-Ay, ¥'+Ay") is alsg™on Ey and with no
corner between it and the formert set. If we denote the
values of f,» corresponding tothése two sets by f, and
fy+4fy: then with the help3f*Taylor’s formula we find

e et gy v+ 00—y 3, ) j

s\ J

=fyx(3d-08%, y1+-04y, y'+0Ay")

A A
A le 002, 3625, 5/ +08y) 72
‘e

N\ : ’
. '.f'\ Ffyty {204z, y-6Ay, y’-HiAy’)%

Afy/Ax has the definite limit Jy as Ax approaches zero,
because the integral in the first equation of this section
has f, as its derivative, and the first two terms in the
second member of the last equation have also well-defined
Limits.. It follows that the last term must have a unigue
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, limiting value, and since fyy-=0 this can be true only if
y"=lim Ay'/Ax exists. The derivative fyy remains
different from zero near the element (z,y, ¥’} on the sub-
arc of Ky, without corners on which this element lies.
Consequently Euler’s equation in the form given at the
end of page 143 can be solved for y”, and it follows
readily that 3" must be continuous near every element , { )\
(x, v, ') of the kind described in the corollary. O

57. The exiremals. After the necessary condiﬁé.!ls
for a minimizing arc explained in the precedin%%ctions
have been established it becomes a problem of jiaportance,
and frequently in special cases one of great difficulty,
to find an arc which satisfies them. From Corollary
2 of the last section we know that’a minimizing arc
on which f,, is everywhere diﬁéreht from zero must
consist of a number of arcs of g:(tfémals satisfying Euler’s
differential equation in thefform (7), and it is desirable
therefore that we should Kitow more about the solutions
of that equation. Sifice the equation (7) contains the
variables =, y, y',\f\“fi: is a differential equation of the
second order. /Erom our experience with the problems
of the preqe&ihé chapters we should expect the solutions
of this equiation, the extremals, to be a two-parameter
famikxiipff‘i:urves of the form

N\

(14, y=y(x, @, 8)

N\

where @ and b are arbitrary constants. This was so for
the shortest-distance problems whose extremals were the
straight lines y=ax-{h, arid for the brachistochrone and
catenary problems whose extremals were two-parameter
familics of cycloids and catenaries, respectively. It is
well known, in fact, that the solutions of a differential

N g,
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equation of the second order will always be the curves
of a family of the form (14) depending upon two arbitrary
constants.

1t is fortunate that the equation of the extremals
contains twe arbitrary constants since the solution of our
minimum problem requires us to find an extrcmal are
passing through two given points 1 and 2, and the number
of conditions which this requirement imposes upony the
constants 4 and b is exactly two. The equations{which
must be satisfiedd when the curve (14) passe:, Kgsou'rh 1
and 2 are, in fact,

n=y(x, a,8),  y=y(mn, a;*ﬁ‘)"

For every problem there will be some pairs of pomts for
which these equations have solutlons e and b, for example
when t and 2 are chosen in advance to lie on the same
extremal. But for spemaI pmltlons of 1 and 2, as we
have seen in the case of the catenary problemn:, there may
be no solution or more\{han one,

If we wish to nd & one-parameter family of extremals -
‘passing through, a' fixed point 1 we must solve the
equation Ps

o\‘ - yl:y(xl: @, b)

for onQ'Bf ‘the constants a, b in terms of the other, or
perhﬁ}s express them hoth as functions a(a), b(a) of 8
Miird parameter a in such a way - that the equation is
*1dent1cally satisfied. When the solution so determined
is substituted in equation {14) a one-parameter family
of extremals '

y= y(x afa}, blat=1(x, a)

is found every one of whlch _passes through the point 1.
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It is not possible here to discuss in detail the theorems
by means of which we may assure ourselves of the exist-
ence and charactér of thé family (14) of solutions of

- Luler’s differential equation (7). Tt is true, however.
that for every admissible extremal arc £, along which
fyy =0 there is a family of extremals (14) which containg™y,
£y for values #, a, b satisfying conditions of the form “\

Q"

nExZwy,  g=ay,  b=h, N

and the functions y(x, a, b}, v'(x, a, b) belonging to the
family have continuous partial derivativescof the first
and second orders near these values.? Furthermore the
family can be so chosen that at thgx’x%;lues (1, Go, o)
corresponding to the initial pointi/of the arc Ey the
determinant . e\

vix, a, B) v:.;y;;(;r:, a, b)
| velx, @, AN i, @, B)

is different from zero
These theoremg are secured by a study of the pair

of equations

d)’ _ dj" _f ¥ ;f ¥'x “f 3"30"

£
7™ vy

(15) A
A | |

in the fhiree variables x, , y*, whose solution is equivalent

to fhat of Euler’s differential equation (7). Evidently
e second member of the last equation has well-defined
“\\Walues near the arc Ey only if the derivative fy is differ-
N ent from zero, as we shall suppose, along that arc. The
fundamental theorem for such a system of equations is
that through each initial set of values {%, %, %) there

~ basses one and but one-solution pf these equations which
we -may denote by y(x, %o, 4, ¥0). Furthermore in 2
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neighborhood of those sets (x, 2, 3, %) which belong to
values of # and initial elements (%, %, v) on the arc E.,
this function and its derivative y'(x, x, vo, y¢) have con-
tinuous partial derivatives of as many orders as are pos.
sessed by the second members of the system of differen-
tial equations (15) for which they define a solution. The A\
equations expressing the fact that this solution passoe
through the initial element (x4, yo, ) are

S
N

Yo=3(%0, %o, Yo, W),  ¥o=1"{0, %0, Vo, yu)

and if these are differentiated for yo and yiwe ﬁnd
R\
1~@v(xo, %0, 3, Vo) 0——~y (‘9@, o, Vo, ¥3) +

9 8 ,
0=—-,:v(xa, Zo, Yo, ¥o) 1»~ ,y’(xo, %o, Yo, Vo) -

Let us now give to x, the ﬁxed value a and replace yq, v by
* the variable parametets\a afid 4. Then the family of
curves defined by thefunction y(x, 21, g, 8) is a family of
extremals having the't type and properties of the family
(14). In partlcu.la,r the last four equations show that at
the initial pgmt 1 of Ey the determinant of the precedmn
aﬂe is equ@l to unity for this family.
Determination of conjugate poinls. If Jacobi’s
: condl n of the preceding sections is to be successfully
a,Pphed we must bave convenient criteria for determining
\\whcther or not there is on the extremal arc Ey a contact
‘point 3 with the envelope G of the one-parameter family
of extremals through the point 1. If the equation
y=3(x, a) of the family is at hand then, from a familiar
theorem of the calculus, we know that Es touches G at
the points whose x-coordinates are roots of the equation
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va(%, ag) =0, where ay is the particular para.meter -value
defining Fjp in the family. ’

Tt is not always easy to determine the equation of the
one-parameter family of extremals through the point 1,
cven when a two-parameter family of solutions (14) of

Euler’s differontial equations is already known.  For that\/)

reason it is frequently useful to have a criterion for deter-
mining the conjugate point 3 which is expressed i “terms
of the original function (x, ¢, b) defining thosegxtremals
Such a criterion can be readily deduced if* #e remember
that the equation of the one—parameter {amﬂy of extre-
mals through 1 has the form - \

y=y(x} a) =y(x1 G{(}?; b(“)) ’
where the functions a(a), bv(g.)’ﬁﬁre so chosen that they

satisfy the equation = 0N .
. 2Y=.j’(xl’ a, b) .
By diﬂerentiatingxﬂl} last two equations with respect

to @ we see that\\ )

yﬂ(x! a, 5)‘1’4‘3’&(1" a, b)b
\ 0=ya(x1, o, B)a'+lx, 0, DY
'® M
wh\e%"a and & are the derivatives of ¢ and 5. Itis
clear that when v, vanishes the determinant of the four

"coefﬁacnts of @’ and & must also vanish, and the criteria

for determining conjugate points may then be stated as

follows:

The points 3 canjugate to I on an exiremal arc Fu are
determined by the zeros x=Fx of the function (2, @),
where y=y(x, o) is the equation of o one-parameier Jamily
of extremals through the point 1 and oo is the porticular
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parameter value defining Eu in the family. They are aiso
determined by the zeros x==x, of the determinant

yd(x, aﬂ, bﬂ) J’.’:{x, 48 b’J)

A(I, xl) =
3’;(5\‘—'1, o, 50) J-'b(xl, g, ba)

where y=3y(x, a, 8) is a iwo-;?ammezer Samily of extre; als
containing Ex as a member of the family Jor the particular
values ag, by. A

For the brachistochrone problem the cquations of
the extremals were fourid in the parametaedorm

a6). . x=g(u, a,b), y_—ik(u@fﬁf.

In problems for which this happénsthe equation of the
- extremals in.the form y=3(x,%8, B) is found by solving
~ the first of these two equatigns for u as a function of the
formu=Ul(x, a2, b) and sulis’%ituting in the second. When
we substitute this funion in the equations (16) the first
equation becomes gm\idcntity in x, @, b and we find by
differentiation th@f%ﬁlowing equations for the derivatives
of Ulx,a, b) 40d v(x, a, b):

X

];t_\;gu‘v:x s {}=gﬂ Uﬂ+ga s 0=g“Ub+gb .
\& .
;‘,§w" : ' y(x’ a, b)-:'k(U! a! b)r
.Qt ~~’ N 1
\ : yﬂ:k'U“+k“=E(gﬁka_gakw) ]

yﬁ=mvb+kb=gi(gﬂka_~gakn) :

. Hence if we use the Weierstrassian notations

ti(u, a, b)=g“kﬂ'_90}’v - &(u, a, 5)=§uk.b_gbkx ¥
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we find that the conjugate points to 1 are defined by the
zeros of the determinant o

6.(u, ¢, b} - Gilu, q b

By, w)=| S
| (s, @, B) (161,00, B) §

where 4 1s the parameter value defining the point 1 on
the extremal. We can therefore determine the conqugﬁf?:'.\
points directly from the parametric equations {16y of
the extremals without the necessity of expressing them in
the form y =(x, a, b), which in a number of problems isa

great convenience.

50. The fundamenial suﬁcie_ncy Hisarem. The con- -

ditions which have so far been dedueed in this chapter
have becn only mecessary conditions for a minimum, but
we shall see in the following pages that they can be made
over with moderate cha:rggféfs:into conditions which are
also sufficient to insuren extreme value for our integral.
Since the comparigéivof necessary with sufficient condi-
tions is one of the “more delicate parts of the theory of
the calculus ’oNai:iations, we shall do weil hefore under-

‘taking it po'consider a sufficiency theorem which in special

cases fréguently gives information so complete that after
usir}g;tif ‘one does not need to pursue farther the applica-

In a preceding paragraph oh_ page 132 a field of

¢\ cxtremals was defined to he a region F of the xy-plane

simply covered by 2 qne-parameter family of extremals

all of which intersect a curve D. By simply covered we
{ F there passes one and
but one of the extremals. The curve D does not neces-
sarily lie in the feld and as a special case it may be
merely a fixed point through which all of the extremals

~
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pass. A picture intended to suggest a field is Figure 43
on page 132, ' ‘

Ii we are to carry through successfully the analysis
involved in the proof of the sufficiency theorem we must
agree more explicitly upon the properties of the family
of extremal arcs covering the field 7. It is supposed ),
that the family has an equation of the form S

Ny

y=ya)  (mZaZa; LAO S LA »

2

. /0.8
in which the functions y(z, a), ¥(x, a) and‘i:ii\zair partial
derivatives up to and including those of thesecond order,
as well as the functions ti{a) and ay };&‘eﬁning the end-
points of the extremal arcs, are confiduous. It is under-
stood that the point of the curve™D on each extremal is
defined by a functjon x=£{'a};ﬁ€}iich with its first deriv-
ative is continuous on thejﬁ*té“rval &1 &z, and furthermore
that the derivative v, is ’ei'érywhere different from zero
on the extremal aress \NTo each point (x,y) in £ there
corresponds a valde) a(x, v) which defines the urnique
extremal of the, f;}ld through that point, and as a result
of the hypothesis that ¥. is different from zero we can
prove by’th}}\methods of Section 24, page 60, that a(x, v)
and its fixst partial derivatives are continuous in #. The
sameis’t}ien true of the slope-function e, y) =v'(x,alx,y))
of, tfae field. These properties form the analytical basis

(O the theory of the field, and we presuppose them always.

) The Hilbert integral

1= J 1 3, p)iettdy—p di) fy (3,3, )

 formed with the slope-function #(x, ¥) in place of p has
Dow a definite value on every admissible arc Cy in the



N
%
\ }
.

g\ p(x, ¥) is satished at every pot
¢\case Cp must coincide with Ew
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field. Furthermore its values are the same on all such |

“arcs Ci which have the same end-points, as has been

pointed out on page 137, and if the points 1 and 2 are
the end-points of an extremal arc Ei of the field this
value is that of the original integral I. Hence we finda
readily for the pair of arcs Cn and By shown in Figufe ™
43, page 132, that ' ' \ >

I(C) —I(Er) =T(Cua) = T*(Ex) =z(cw)—r*€’i’=3' ,

.,
R

and when we substitute for T and T'* theitvaldes as inte- -

grals it follows that 7 \d :
- N ] - . .\ W

(17) I(Cu)—I(Em)=f E(I, y;P(ﬁ:. y)! ‘)”)Jﬁ .o

T

In the integral on the rigl;‘t:'xjr'and its derivative y are
functions of-x obtained ffgin{ the equation y=y(x) of the
admissible arc Ce.

The sufﬁciency"'tiieorem of page 133 is an immediate
consequence ofthis formula. For the hypothesis (5}
that the E-fudiction is greater than or equal to zero in
the field implies at once that H{Eg) £I{Cn). TIf the
E -fuglqtf.%ﬁ vanishes in the field only when 4’ =4 then t.;he
eql\Kblitjf I(Ew)=I(Ci) can hold only if the equation

nt of C. But in that
since the differential

equation y’ = p(x, y) has one and but cne solution through

the initial point 1, and that one is Zu. -
The sufficiency proofs of the three preceding chapters

‘were all applications of special cases of the formula ( 17)

and the theorem of page 133, as one may verify by
examining again the proofs in Sections 13, 27, 42, of t.he
respective pages 27, 66, 108. For each of the special
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problems there considered the second derivative f,, is
positive for all admissible sets (x, v, ¥} and the formula

{18) E(r, 3, 5, ¥)=3(y' = p),in(x, v, Py —p)) (0<O<1)

- of page 139 shows that the E-function is posilive wiicps

ever y'#p, as presupposed in the last sentence of.\ﬂ?e~\
sufficiency theorem. ' AN

A regular problem is one for which the deriyvative /.,
has the same sign for all admissible sets {x, v&Y, and for
which further every set (x, 3, ¥) with 3] <3’ is admis-
sible whenever the sets (%, v, ) and (#, ¥, 10) have this

- property. The formula (18) showg\'(liat for such prob-

lems the hypothesis E(x, v, P, YIR0, when /= p surely
holds, provided 7., is positive, and we have the following

. corollary of the last theorem ™

N o

COROLLARY.  If En isGh extremal arc of a ficld F for
a regular problem with Py >0 then the inequality T{Cq)
>I(Ey) kolds for gtery admissible arc Cy in F different
from Eiy and joi ifzgtéke poinis 1 and 2. _

The problems' of the tiiree preceding chapters were
all regulat problems with Fyy >0.

60. Safficient conditions for relative minima, We shall
be very‘much aided in our effort to construct sets of
suficient . conditions out of the necessary conditions L.

H,HI, IV if we establish first the following lemma:

LeuMa.  Fvery extremal are Fie having fy,0==0 along
i, and containing no point conjugale to 1, is interior to @
field F of whick it 1s iiself an exiremal are.

The initial step in the:proof is to show that tke arc
B is a member for ¢=0 of a one-parameter family . of
extremals ¥=u(x, } having v,{x,0) diffcrent from zero
along Eyp. To prove this we note first, according to the
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remarks on page 147, that when f, is different from
zero along Ey there is surely a two-parameter family
of extremals y=1v(x, a, ) containing Ey for a special pair
of parameter values g, b0, and we remember further that
this family can be selected so that the derivative with
respect to x of the determinant. ;

. PR
Ya (xl o, bo) ¥ (x: o, bﬂ) : Wy

Ao B)= | oy o) bl o)
. . R4
is different from zero at the point 1 on Ep; & condition
which may also be expressed by the, ineqitality.
A, 2,)=02 We now select a positive cofistant € so that
A’(x, m) remains different from zefé for every pair of
-values (x, xo) satisfying the inqua’lit’ies
m—eSH<z, ateSzsrte,

™

a choice which is possible sihce when e is small the pairs.

(%, %) satisfying these Jnequalities are all near to the pair
{x;, x:}. For eve \fided value xp on the former of these
two intervals the determinant A(z, x,) vanishes at
and has itsdéfivative A'(x, xo) different from zero every-
where onsthe’interval ;y—zSz=mte It will therefore
surely fé “different from zero for values of x on the
interal gxéxl_—l-é. It will furthermore be differer_lt
from zero on the interval m+e<x S if the valuf:- X is
““gelected sufficiently near to x. For when Ey; contains no
point conjugate to 1 the determinant Alx, 1), whose
zeros determine the conjugate points, must be different
from zero on &€= x =< xs, and Az, xo) will a150 have this
property when % is near to x.. If we now set

k=ys{2o, G0, B},  F=—7al%n, do; o)
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then the one-parameter family of extremals
y=3’(x, ‘10+ka! EJ:]—,—IG.) =3’(x, a)
~ .

has the properties prescribed at the beginning of this ,
paragraph. For it contains E, for the parameter valge

a=0 and has its derivative \ \))

:}'a(x, O)=ya(x; ao, 5o)k+}'¢(x, da, 60)3=A(-_1:, .’,gu‘).:":

» 3 . 4 &o'
- different from zero on the whole interval DEP S,

The family of extremals so defined Simply covers a
field FF adjoining the arc K. Fo:;xwé"may take € so

small that the derivative y,(x, a) rethains different from

zero for all values of x, o satisfying the inequalities
: N
HZxZop a Se .

a3

Then on each ordinate of the region F shown in Figure
46 the value v(x, a)\iries monotonically from boundary
)

N/

N

to boundary of the re-
gion as ¢ increases from
—~¢&to+e. Through each
point of F there passes, '
therefore, a2 unigue ex-
tremal of the family,
which is the same as say-
ing that for each point

Fia. 46 (%, ) in ¥ the equation

' : y=y(x,a) has a unique
solution a(x, 4). By the methods used in Section 24,
page 60, we may show that the function a(x, ¥) and its
first partial derivatives are continuous in the field F,

ARY
N Fa
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and the same will then ‘be true of-the slope;function
plx, v) =v'(x, alx, ) of the field. )

We are now in a position to discuss successfully the -

important sets of sufficient conditions which insure for
an arc Eye the property of furnishing a relative minimurm
and which were indicated briefly on pages 134-35. We

have seen in Section 51, pages 128-29, that there is a cong”
siderable degree of arbitrariness in the choice of the re:gi'gp'

R in which the minimum problem of this chapter miay be
studied. Relative minima are really minima m:\::arta.in
types of sub-regions of the region R originally selected,
and their existence is assured by the/zo ditions de-
scribed in the following two theoremg\"

SUFFICIENT CONDITIONS FOR A WBAK RELATIVE MINI-
vMuM. Let Fyy be an arc without 5§£ﬂérs having the properties

1) 4t is am extremal,  ON°

™

2) fyy >0 at every set of walues(®, ¥, ") on it,

3) it contains no poini 3 conjugoate to 1. '
This is eguimim\ Saying that Eu sotisfies the condi-
tons I, JII', IV, “Then I (Ew) is surely a weak relative
minimum, ap{F-other words, the inequabity I(En)<I(Cr)
holds for ez@éy o dmissible arc Cu distinct from Eu, joining
1 with @y‘and having its elements (x,,9) allina suffi-
cientPsmall neighborkood R’ of those on En. '

RN T o prove this we note in the first place that the con-
mfdftions 1, 11D, IV’ imply for Eie the properties 1), 2), 3) of
‘the theorem, and conversely, as one sces readily with the
help of Corollary 2 of page 144. Furthermore the same
three properties insure the existence of a field F hav-
ing the arc Ep as one of its extremals, as indicated
in the lemma of this section. Let us now choose ‘2
neighborhood R' of the values (x,y,y) on En s0 s_mall

-
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~ that all elements {x, v, ¥) in R! have their points (x, y)

m F,and so small that for the slope-function p=plx, v)

- of F' the élements x, y, p+6(y"—p) having 0 =0 <1 are all

admissible and make S0, Then the function
B % 25 90, )= =)y (v, 3, p4-0y— )

A\
Is positive for all elements (*,%, v)in R’ with Y ﬁ;ar;a'
the fundamental sufficiency thearem of page 133, with R
replaced by R’ in the definition of admissible sebsi jubtifies
at once the theorem which we wish to provg,.;\{

SUFFICIENT CONDITIONS FOR A STRONG RELATVE

MINIMUM.  Let Fuy be an arc Mﬂfzm{ ALOFReErs havin : the

o’

properties of the preceding theorem anid. te further pro.erty
4) atevery element (x, ¥, ¥') in @adeighborhood R' of those
on By the condition Elx, 3, 3", ¥ >0 4s safisfied for
v every admissible set (% g 'I/") with Yoy,

This is equivalent io saguy that Ey satisfies the con-
ditions I, Iy, IIP, Ly Then I(Ey) is q strong rela-
tive minimum, or",xs'{i other words, the tnequality J(Fy)
<HCw) holds Ji é\'ﬁeéy admissible arc Cig distinct from En,

Joining 1 withd, ond having its points (x, ¥} all in a suffi-
cienily smallneighborhood F of those on E,. - '
The, Rroperties 1), 2), 3) insure again in this case the
existeneg-of a field F having F. as one of its extremal
areghand we may denote the slope-function of the field

asusual by plx, v).  If we take the field so small that all
(0f the elements (x, v, pl, y)) belonging to it “are in the

neighborhood &' of the property 4), then according to
that property the inequality E(x, ¥ 2(x, ), ¥ >0 holds
for every admissible element (x,y, %) in F distinct from
(=, 3, p(=, 3)), and the sufficiency theorem of page 133
gives at once the desired conclusion of the theorem.



" COMMENTS . 159

When the region R contains every set (£, y, ¥*) with
yi<y’' <y provided that (z, y, ¥{) and (x, y, %) are in R
the condition I11;’ by definition implies that fyy is posi-
tive for all admissible sets {x, , ¥') with points {x, ¥ ina
neighborhood of those on Hu.  The equation (13). on
page 139 then shows that the condition T, has II)’ as O\
a consequence, and we conclude at once that the follow=\
ing corollary is true: . : LAY

CoroLLARY. When the vegion R has the pm;aeréu just
described the conditions I, I1Iy, IV’ on an arc E,ﬁre also
suflictent to make I{Exw) o strong relalive s '

61. Comments on the preceding conclusions. We have
so far been discussing only minim?,'.%i" our integrals,
but it is very easy to see.that chlaa:l‘ginxg the sense of the
inequality signs in the condition§ which have been dis-
cussed in the foregoing pages ok this chapter makes thése
conditiocns over into correspbﬁding ones for a maximum.
One needs only to notelthat a curve which maximizes an
integral T will minim'ik the negative of that integral.

It is unfortuﬁa\té’ that the sets of conditions which
have been profedl necessary for a minimum are not iden-
tical with those which hive been proved to be suf-
ficient., “\"Eo} a weak relative minimum, for example, the
necesddry conditions' I, I, IV appeared -as sufficient
Only: when they were strengthened to be I, 10, IV’; and

_{for'a strong relative minimum the necessary conditions
UL 11, 111, IV were replaced by the much stronger set
T, Ty, I, IV’ in the sufficiency proof. Bolza has
deduced a Hith necessary condition of a somewbat arti-

. ficial type which assists in bridging the gap between the
necessary condition II of Weierstrass and the corre-
sponding condition ITy’ in the set which is sufficient for a
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strong relative minimum, but a further serious difficulty
lies in the discrepancy between the conditions IIT and
II". We cannot conclude by means of Corollary 2 of
page 144 that a minimizing arc on which fyy sometimes
vanishes will have a continuous second derivative and
be an extremal, and if such an arc is an extremal we cafiy,
not be sure that it belongs to families of extremals-sick
as are described in Section 57, page 145. When" the
denominator f,-, of the second differential equation (15)
~ Is not always different from zero the existenee theorems
for those equations do not apply. LittleNs'known con-
cerning this exceptional case for whichfy', has zeros on
the minimizing curve, and the vakiety of possibilities
which may present themselves i bfobably in that case
very great. N
Without involving ou}jséfi?es further in these difi-
culties let us consider for'a moment the class of regular
problems defined on page 154 to which, fortunately, most
of the applications-efiour theory belong. For such prob-
lems fyy is diffefenit from zero at every admissible cle-
ment (x, y, %) and every set (x, v, ¥") with yi<y'<yf is
- admissible &) (v, y, 0) and (x, y, y8) have this property.
We camyprove, as on page 143, that a minimizing arc
Eng;‘DﬁiS case can have no corners, and by Corollary 2
of{page 144 that it has a continuous second derivative
aand is therefore an extremal. The condition III now
\“mplies 11’ since the derivative f,.,» never vanishes in
" R Ii the envelape of the one-parameter family of extre-
mals through the point 1 has a branch projecting back-
ward from the conjugate point 3 the proof of Jacobi’s
condition in Section 35, page 140, shows that 3 can
lie neither between 1 and 2 nor at 2 on Eys, so that the
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condition IV’ is also necessary for a minfmum. We
have then the following theorem:

A minimizing arc Ep for o regular problem must be on
extremal on whick fyy is everywhere greater than zero.

If the envelope of the one-parameler Jamily of extremals, (\

W

through the point 1 has a branch projecting backwapd,
toward 1 from the point 3 conjugate to 1 on Ey, tken},'gdés

lie neither belween 1 and 2 nor at. 2. Furthermoresan arc -
Eys with these properties surely furnishes a skony. relative

mintmum. This is equivalent to saying (RN case the
problem is regular and the envelope kas a braniol as described,
the conditions I, ITI, IV’ are boik necessary and sufficient
for a strong relative minimum. =~ NV

It remains to consider what happens when the envel-
ope has no branch projecting backward toward the point
1. In this case the proof;pf.]'acobi’s condition given in
Section 55, page 140, cannot be applied, but the condi-
tion is nevertheless 'rge(}essary, as we shall see in the next
section. As is sl’:a\bgd in the last theorem the arc X
furnishes a minflaum when it is an extremal and has no
conjugate peiift anywhere on it, and it is provable with
some difficulty that it still furnishes a minimum, at least
of a reg{ricted sort, if the point 2 is conjugate to 1, pro-
vided always that the envelope has no branch projecting
ba\é]i%vard from 2.8 We have thus a discussion of relative

{“winima for regular problems which is in some respects

complete, ~ '
62. A second proof of Jacobd’s condition® It has

been remarked in the preceding pages that a second proof
of Jacobi’s condition is possible which gives information
about the position of the conjugate point on a minimizing
arc B, in all cases, no matter what the form of the envel-
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.ope of the one-parameter family of extremals through

the point 1 may be. To make such a proof we consider
again the values 7(a) of the integral I taken along the
curves of the family v={x)+an(x) described in Section
19,‘pé.ge 47. 1n order that the value J(0) along Ei, may
be a minimum it is necessary not only that I'(0} =0 bty
also that I"’(0}=0. The former of these conditions gzwu'
the properties of the minimizing arc describeds Jdir the
necessary condition I on page 130, and it is7 “ftomn the
latter-that we are now proposing to dedu}e Jacobi's
¢ondition anew. Tor the proof of this eondition it is
always assumed that the minimizing, dr¢ Em is an extre-

mal and has f,,-5=0 along it. o
The functmn I{a) and 1ts ﬁrgt derivative have the
values R

Ia)= f f (ve,}’a;#an, y'+aen")dx ,

I'(a)= ﬁ (fm+fym'dx ,

where the argun\lents in f,, fy are the same as those in f,
and we rea.diiy find by diffcrentiation of the last expres-

sion tha{ghe second derivative 1/(0) has the value
7\

N\ r"<0>=2f Qlx, 9, 7)dx

_where.

..\’(19) ©29x, 0, 0 ) = 2 fren'?

It is correct to designate © as a function of %, 1, %' since
in the second derivatives of f the arguments are now the

values x, y(x), y(x) belonging to the minimizing arc .
It will be useful to have noticed the property

g 222,y
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of the quadratic form @, which can easily be verified.
The notations &, and 2, stand for the partial derivatives
of £ with respect to 4 and 9.

The fact that the second denvatlve I”(O) must be
positive or zero for all admissible functions g{x} vanish-
ing at x; and 2, suggests at once a new minimum problem. O\
in the an-plane analogous to the original one in the xy,~\ "
plane. For this new. problem the integral "(0) ta.kes'
the place of I, and the points (x, %) ={(x, 0) and (% 'q) =
(25, 0) are analogous to the poiats 1 and 2. Themﬁblem
is evidently a regular one since the second\ derivative
@, =fyy is different from zero, and it foQows that no
minimizing curve for it can have corner& }{ccordmg to a
remark made on page 160.

The differential equation of the minimizing curves,
analogous to Euler’s equatlon. {a&) ‘of page 130, is

(21) ann"-_ﬂ:=_(J{J':ﬂ’?'”[;fy'?"?’}_(fw’?"f'fyy"f? }=0.
£
Itis a dlﬂereptlai}q\latmn of the sccond order linear in
7,9, v, and is. callcd Jacobi's differential equation because
Jacobi was e first to demonstrate its importance in
the calcukus of variations. The coefficient of the deriva-
tive n”\m this equation is f” =0 and the equation
can, therefore be solved for 4. It follows that no solu-
mtlt)n n=u(x) of Jacob¥s equatmn can vanish with its -
\_flerivative at a value x without being identically zero.
For, as stated on page 147, we know that a d]ﬁerent.lal
equation of the second order in . solvable for »”, has
one and but one solution through the initial element
(x,79,9") = (x, 0, 0}, and for the linear equauan of Jacohi

this solution is readily found to be #=0.
4 .
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If there is a solulion 7=u(x) of Jacobi’s equation
vanishing at % and as, but not identically zero between
these values, then the point corresponding to x; on our
origingl arc i is conjugate to 1, as we shall presently
see. Our purpose is thercfore to prove that no value as
associated with x as ]ust described can exist between\
oy and Za. ¢ \

To prove this suppose that there did exist Qsélution
u(x) of Jacobi's' equation vanishing at x; and at a value
25< a2, but not identically zero betwedd™ }hem The
curve in the xg-plane defined by the eq\u,a.tlons

(22) n=u(x) (:‘-7153"&‘-3)
=0 . (xsé‘x*fxg)

would then have a corner at; tﬁ,e point (a3, 0}, since accord-
ing to a remark made a,bove #(x) would be identically
zero if u'(x;) were zetos with u(xs). Furthermore the
curve so defined watld satisfy Jacobi’s differential equa-
tion and give J "‘(‘Q) the value zero, since with the help
of equatlons {2 b‘) and (21} we find along it

\X 29»(:1:, 7, n) 72y —w(nﬁq) ;

)
,»\:;

O . =fx’5 it | =
K )= | Satde=ng, | =0.

») The value zero thus furnished by the arc (22) could not
be a minimum value for 7//(0) since, as we have seen, this
arc would have a corner at (x;, 0, and no arc with a corner
can furnish’ a minimum for the an-problem. There
would ‘therefore be functions n(z) vanishing at = and
and giving 7"(0) negative values, which is impossible if
our original arc Fi minimizes the original integral [ in

\
o'
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the xy-plane. Evidently, then, no value x; such as has
been described is possible between % and 4 when 7{E,;
i3 a minimum. _—

The point defined by a value %3 in this section, and
the conjugate point of pag= 131, seem at first sight to be
quite different, but one can readily prove that they are in
reality identical. .On an extremal arc of the one-paraf

meter family of extremals y=y{x, ) through the po;mi, )

the point of contact 3 with the envelope G of the fa.rmly
is the point where the derivative y, vanlsheé\ This
derivative vanishes at the point 1 also, as we3ed by differ-

2N

2\

entiating with respect to a the identity y,a\\y(xl, a) which

expresses the fact that all of the extrer:ﬁsls of the family

pass through the point 1. Funhermore v, satisfies -

Iacobl 5 dlﬁerent.lal equatlon For from the 1dent1ty
7 fy Az, ¥(x, a), y’ (=, a))**f«y(x y(, a), ¥(z, a)}=0

holding along ail of l:héxextremals y=1(z, a), we find by
d]ﬂerentlatlon mbl{\respect to « that

f:v yyu+fa' ¥ Ya}— (fyyyn'f'f;w Aad=0,

Suppose(n}w that #{x) is a solution of Jacobi’s equation

vanishing at x, but not identically zero. Let a constant
k be 50 determined.that

N\

)} yultn, ao)— kit (11} =0,

where a4, is the parameter value defining the arc Ein n

the family. The difference yu(x, 20)— ku(x) will be a
solution of Jacohi’s equation for K, vanishing with its

derivative at x;, and hence identically zero. Conse-.

quently the conjugate pomts defined by the zeros of
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Y. =ku are the same as those defined by the zeros of #,
and we see that the values x; of this section are identical
with those which define conjugate points.

We may prove in the same manner that the con jugate
points determined by any two different solutions of
Jacobi's equation vanishing at 2, must be the same, afdy

. the choice of a particular solution to usc for finding these
points may therefore be determined by considerations of
convenience. We can see readily that the d\a’j:erminant

yd(xs g, bﬂ) yb(x, 0y bﬂ):

: A ﬂ‘:1) Yal1, @o, bo) 3’6,(9‘:31\,\ &, bo} ’
used on page 150 to determine dobjugate points, is such.
a solution, For we can .show that the derivatives
va(k, @, bo), vo{®, ao, by) Aaret s'glhtions of Jacobi's equation
by the method used in.fhe last paragraph for v,. The
determinant A(x, #,)48% linear combination of Ve, Yo with
constant coeﬂiciepitéx\'hich also satisfies Jacobi’s equation.
and which evidently vanishes at ;. '

03. Necessary conditions when one end-point is var-

able. I justead of seeking a minimizing arc among the
admis;ii?ié arcs joining two fixed points 1 and 2, we seck
one'\étmong the admissible arcs joining a fixed point i
agda fixed curve N, then our problem is said to have

s~enc end-point variable along the curve ¥. A minimizing

) “arc Ly dor this problem, meeting the curve N in the
_point 2, must evidently be a minimizing arc for the prob-
lem with end-points fixed at 1 and 2, and hence must
satisfy at least the first (hree necessary conditions of
Section 52, page 130. TIn order to avoid unnecessary
complications we shall consider only the case when the.
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point 2 is not at an end-point or ata singular point of the
arc N. ' .

For the problem with one variable end-point there is
4 new necessary condition for a minimum, involving the
directions of the curves Fi and N at their intersection
point 2, which is called the transversality condition. 'This
condition may be readily proved with the help of the O
formula (8) of page 137. For let the points of N be"
joined to the point 1 of Ep by a one-parameter famity; of
arcs containing £ as one member of the famil .:"I_f the
curve C of the formula just cited is reptacedhy the fixed
point 1, and the curve D by N, then this formula shows
that the value of 7 taken-along the a &bf the one-para-
meter family has at the particular aﬁ:&u the differential

& =f(, 3, ¥V (dy <99y @ 3 VI

where at the point 2 the‘di}’fe"rentials dx, dy_ are those of
N and the element (x,,7") belongs to Eu. If the values
of I' along the_ar(i%'o;f\ the family are to haye_ I(Ep) as &
minimura then the ‘differential ¢/ must vanish along Bz
and we have(he following result: -
Tz $RANSVERSALITY CONDITION. If for an admis-
 sible ar€ B joining @ fixed point 1 1o a fixed curve N the value
I(F }s "2 minimum with respect bo the values of I on neigh-
bo?z}zg admissible arcs joining I with N, then al the inter-.
 (section point 2 of and N the direction dx:dy of N ond
) the lement (x,,5") of En peust satisfy the relation
(23) G, 3, Y)dat @y =Y )y (% 3 ¥)=0.
Tf this condition is satisfied the arc N i3 said to cut
the point 2.- For many problems

Ey; transversally at
ndition implies that E and N must

the transversality co
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meet at right angles. This is so for the three problems
studied in Chapters IT-IV, but it is not true in general, as
one may verily in many special cases,
_ A one-parameter family of extremals cut transver-
- sally by a curve ¥ is a generalization of the one-paraineter
family of straight lines normal to & , and we have for,
such a family of extremals the interesting generalizatigin)
of the string property of the evolute of a curve which\ls
' : ' described in tha\fol-
lowing th(i(q&m
THESENVELOPE
THEcyli@:\{. In a one-
pgz{imeter Jamily of ex-
SFemals each cui trans-
\ wersally by anarc N, as
- \ » shown in Figure 47, let
Fre. 47, R By and Es be two ex-
. " ’j' tremals which touck the
envelope G of the Jamilhin the poinis 3 and 5. Then the
values of I along f\@' arcs B, Gu, Ey satisfy the relation

G+ E)=1() .

The p;‘@i}? of this formula is made with the help of
formula-(9) of page 137, by the method used frequently
for 't\héenvclope theorems of preceding sections. Accord-
Ing o that formuly .

AN

\™ I(E545"I(E32) ":II*(NM) —I*Gs) .

) 2

But on account of the transversality condition (23)
which holds along the arc &y, the value of I*(N.) is
readily seen to be zero; and along the*arc Gy we have
dy=p dx and’ consequently TGy} =I(Gy), as in the



WHEN ONE. END-POINT VARIES by .

proofs above referred to., The last formula is therefore
equivalent to that of the theorem which we desired to
prove.

The point .3 Where an extremal arc Eg touches the
envelope G is-called the focal point of the curve & on-
Es. It is a generalization of the center of curvature of O\
N, which is the point of contact of a straight line orthog- C
onal to N with the evolute of that curve. By a,pmof
like that of page 141, the envelope theorem has dg)a con-
sequence the following necessary condition cor"f&pondmg
to the one which Jacobi discovered for thé\tase of two
fixed end-points: ' 9, \ul

THE ANALOGUE OF JACOBI'S conm'hon detEpbean
extremal arc joining a fixed poini I to 3 fixed curve N | having
fyy£0 along i, and cul tmnmsely by the curve N at the
potnt 2. If the value T (Em) 43 a mintmum with respect 16
the values of I on nezgkbormg admissible arcs joining 1
with N then the arc Eg'cin have on it no focal poiiit of the
curve N between 1 g 2, i.e. o poini of contact 3 with an
envelope G ofsa ‘vne-parameter family of exiremals cui
transversallydrN and containing Ex as a member, as shown
in Figur 4?\

For-the case when the envelope G degenerates into
a p(‘)ﬁt or has 2 cusp at 3 with branches leading away from
the\ point 2 the proof of this theorem indicated above
fb.lls but it is still possible to show by an analytic proof
) that the focal point 3 cannot lie between t and 2.

64. Sufficient conditions when one end-point is variable.
The sufficiency theorems for the case when one end-
point is variable differ from those of pages 15758 pri-
martly in the addition of the trans sversality condition.

We may state them as follows:
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If cn admunb!e arc Ey withowt corners las the prop-
“ertiss :
a) il is an ex;rema.!,

b) fyy >0 at every sel of values (x, v, ¥') on ii,

'c_) T30 on it at the point 2 where the curve N cufs il

transversally, ke

'd) it contuins no focal point 3 of the curve N, O
then I(Ew) is at least a weak relative minimum, Ij E,
has further the property 4) of the sufficiency !keorem of ‘page
158, then I(Ew) is at leasi @ strong relative mnm}mm For
@ maximum the inequalities in the condiifups b) and 4)
wiust be changed in sense. \\

The properties a) and 3) assure us\that Ey iz a mem-
ber, «for special values 4, and bo, of a two-parameter
family of extremals y=1y(x, a,’b) such as was described
on page 147. Let the equatltms of the curve ¥ in para-
metric form be \ '

N

(200 'x=\x(a), y=y(a)

with a=a, deﬁmftg the point 2, and x(a); v(a) having
continuous ﬁrs?: and second derivatives near this value.
If we can ,soive the equations

(25) fkﬁ(o-) ¥(a), P]x’(a)-l-b'(a)—'Px’(a)]fy[T(a) 3’(“) pl=
,'C\ y(x(a),a by=¢p, y(x(a), a, B)=7(a

’foi' the variables p, g, b, as.functions pla), a(a), bla) satis
Tying the initial conditions a{e) = a, b{as) =&, then the
one-parameter family of extremal arcs

(26) - y=y(x, ala), ba)) =y(x, «)

contains the arc Ep, for a=ay and has its members all cul
transversally by the curve & at the points where x=x{a}.
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That such solutions p(a}, a{a), b(a) exist may be
verified in a particular case by actually solving the equa-
tions, but it is also a consequence of well-known existence
theorems for implicit functions. On account of the
hypothesis ¢) of the theorem the equations (25) have the
particular solution (a, , @, 8)=(az, P2, a0, &), where fia)
is the slope of Fy; at the point 2, and a4, @, bo havé the
significances already ascribed to them. The gleig:fmi- :
nant of the derivatives of the first members of eguations
(25) with respect to , o, b is readily foundhtoybe

- ]
. 34 (xla), a, 8) £9i(u(a), ¢ b
O =)oy A g @0 .
Ya{xla), g yi{(x(al, 2, 8)

At the solution (s, fa, o, B0) the three factors of this
cxpression are all different* from zero. The first is so.
gince at the point 2 tjne‘%i:[uation v’ ~px’ =0 and the first
equation (25) would\imply 2" =0, f being assumed differ-
ent from zaro,atthe point 2 on Ex in the hypothesis c)
of the theotem) and the two equations ¥ —px’=x"=0
would imply-a singular peint for N at the point 2, a
possibility which has been excluded by hypothesis; the
secand{factor does not vanish on account of the hypothe-
slsib) of the theorém; and the family y=y(z, a, b) can be
_do"chosen that the determinant is different from zero at
“\ the point 2, as described on' page 147. But when the
/' equations {25) have a salution {as, Pu, @, be) at which the
functional determinant of the first members with respect
to p, a, b, does not vanish, then the existence theorems for
implicit functions® telt us that there are three functions
#(a), ala), b(a) which satisfy the equations identically
in @ and reduce to f, o, bo for n=a» These functions

\
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are furthermore continuous and have continuous deriva-
tives. ' .

- We should note that at the point 2 the derivative v,
of the family (26} is different from zero. For the func-
tions x(a}, y(a) defining the curve & satisfy the iden-
tity y{a) =v(x(a), &) which when differentiated givey™
¥'(az) — por’(6s) =3,(1s, 2,), and this is different from zegn -
as we have seen in the last paragraph. When the, By-
pothesis d) of the theorem is fulfilied the derivapive ¥, of
the one-parameter family of ‘extremals (26}&1‘19& con-
structed is furthermore different from zerd aldhg all the
rest of the arc E,. Hence the extremals-of the family
simply cover a field F in which the\t%o fundamental
properties of the Hilbert integral ;Ca:nxbg- established, as
we have seen on page 156. “With the help of this field
the sufficiency theorems in witich we are here jnterested
can be demonstrated. I qﬁ’iét Cie be an admissible arc
joining 1 with & in F, g5 shown in Figure 47. Then we
have, A

I (Ckzx—"f (En)=I{C) — I*(£1)
L =I{Cie) = I*(Crg+Ng)

O\ : =I{Cin)~ I*{Cye)
since a5 We have seen, the value of 7* is zcro on an arc
ng.'a'l'?%g which the transversality condition holds, The
r{\:ét"of the proof is the same as on page 153
~ 63. The case when both end-points are variahle® It
will not be possible to consider in detail here the proofs
of the necessary and of the sufficient conditions for the
-ase when we seek a minimizing arc amon g the admissible
ones which join two given curves i and N. We may,
lowever, summarize the results and give indications of
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the methods, similar to some of those already used in
preceding sections, by means of which they may be
established.

Let the minimizing arc Fy, intersect f at 1 and N at
2, as indicated in Figure 10, on page 39, for a specigh,
case. Since Ey must in particular furnish a minimfgr2’
when compared with other admissible arcs ]ommg 1 with
-, 2 it must satisfy at least the first three necessary Condi-
tions of -Section 52, page 130. Since Ep fufthermore
necessarily furnishes a minimum when\compared with
other admissible arcs joining M with the point 2 we see
that this curve must cut Fy, transves{a&ly at the point 1,
and by a similar argument that N anust also cut E;, trans-
versally at 2. \

The iurther necessary J:Oncﬁtions are quite similar
to those of Section 16, page "38, and-are proved by similar
arguments. The centers of curvature of that section
are to be replaced by the focal points 3 and 4 of the
~curves M and \'én’the arc Ei. In order to make sure
that two one*parameter families of extremals cut, trans-
versally by’ and N exist defining these focal points,
let us as{ufne that the minimizing arc Ey; is an extremal
wi w0 along it, and that f40 on the arc Ey; at

ch 1 a,nd 2. Then the construction of the preceding
,\~sect10n is possible for both M and ¥. We may further-
«more confine our attention to the case when the envelopes
of the two one-parameter families of extremals cut trans-
versally by M and N both have branches at the focal
points of these curves projecting toward 1 and 2, respec-
tively. With the help of the results just found for the
case of one variable end-point, combined with the methods
of Scction 16, page 38, we can prove that the intersection
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points 1 and 2 and the focal points 3 and 4 must be in the
circular order 4312 on the arc E if Ey is to furnish a mini-
mum, ne ceincidence being permitted except possibly
that 4 may coincide with 3.

On the other hand, we can prove that an arc E;; with-
out corners will furnish at least a weak relative ninimums
provided that it has the following properties- ™

@) it is an extremal, Lo

b) fyy >0 at every element (z, v, ¥') on it,

¢) f=0 on it at the points 1 and 2 where\M and N,
respectively, cut it transversally,

d) the points 1 and 2, and the tocalx,pomte 3and 4
of M and ¥ on the arc E, respectively “are distinct from
each other and lie on E in the cirewlar order 4312

If we add the condition 4) of the theorem of page
158, then I(Ey) is at Ieast Y ‘strong relative minimum.

66. Historical remar(z;. Tt may be of interest to
recapitulate briefly here the contributions, mentioned in
the preceding pages;of the series of illustrious mathema-
t1c1ans whose re\éar(_heq have successively added to our
knowledge of(the calculus of variations. We have scen
that the ancslent Greeks knew that the circle is the curve
of gwen’penmeter which incloses a maximum arca, and
tha\Gahleo (1564-1642) in 1630 formulated the brachis-
toch}one problem partially at least when he compared the
{ume of descent on a circular segment with the corre-

\ spondmg times on inscribed polygons and other arcs
joining its end-points.* In 1686 Newton (1642-1727) pro-
posed his problem of the surface of revolution of mini-
mum resistance and gave without proof a characteristic
property of the carve which is its solution.!

- The systematic development of the theory of the

S
N
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calculus of variations really began, however, when John.
Bernoulli (1667-1748) reproposed the brachistochrone
problem in 1696 .His own method of solution in 1697
depended upon. an analogy with the problem of deter-
mining the path of a ray of light in a medium with vari-
able index of refraction, and was not widely applicable to ¢\
other problems. But the methods which James Bepn' )
noulli (1654-1705) applied in the same year-to the bra-
chistochrone- problem, and in 1701 to an isopqrirr,ietfic
problem which he had proposed in reply to his. brother, -
were sufficiently powerful to be effectiveof a large
variety of maximum and minfmum qug:stibﬂs.’ :
Euler (1707-83) was a pupil of John Bernoulli in
Basle and was undoubtedly very, familiar with the work
of both John and his brother, AHe elaborated the geo-
metrical-analytical methodsef James Bernoulii and sum-
-matized in a compréhegsi”\:'é’ memoir of 1744 the results
which he had obtair;é@ for very general classes. of prob-
lems.’ One of fnbst important things which he did

was to discover the differential equation d fy/dx—fy=0
which beartfs.\his name. . -

As p}:o\blems of greater djfﬁcplty were suggested and
undertaklen the methods of Euler became more compli-
catédy Lagrange (1 736-1813) devised in memoirs of
1462 and 1770 an analytic imethod which made it possible

N 4o deduce readily the differential equations of the mini-

: mizing curves of very general problems of the calculus

of variations which have as instances an amazing variety
of maximum and minimum questions in mechanics and
physicsﬁ’ In the integrals which he was studying he
replaced the function y(x) defining a curve by a new
* function y(z)+8y(x). An integral [ was thus caused
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to take on an increment whose first order terms in §y-and
its derivatives were denoted by /. Euler very promptly
adopted the methods and notations of Lagrange and
named &y(x) a variation of the function y(x}, and 8/ the
variation of the integral. From that time the theory
which we have been studying was called the caleulus(of ),
variations. ' « \
James Bernoulli had propesed the problem of findirg
the path of quickest descent from a fixed pointito a fixed
vertical straight line. Lagrangs formulaté@ his new an-
alysis so that it applied to more generalyproblems with
variable end-points, and found trag@e}sality conditions
which must hold at the intersectiops of the minimizing
curve with the fixed curves or sutfaces on which the end-
points of his comparison cqnj‘vés’ were allowed to vary.
The conditions mentigiied in the preceding paragraphs
are analogous to the, .cotidition’ f{a)=0 at a magimum
or minimum f(a) of ‘a function f(x), and they are the
same for either & maximum or a minimum. In 1786
Legendre (1752-1833) undertook the cxamination of the
so-called ge{cdnd variation 4 of an integral ia order to
finda t;r:icefion which would distinguish between maxima
and gninima.® By a transformation which he did not
justify conclusively, he found the conditions FyyZ0along

Jgiminimizing curve, f,, <0 along a maximizing curve,

O
N\ N
R 3

which have been described in the preceding pages.

In the half-century which followed this discovery of
Legendre the theory of the problems of the calculus of
variations which we have been studying stood relatively
still.  The analogies between the variations of Lagrange
and the differentials of the ordinary calculus absorbed the
interest of students of the subject, who elaborated them
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.- with doubtful rigor and mthout great proﬁtto the theory..
In 1837, however, Jacobi (1804-51) rs-examined the
transformation of the second variation which Legendre
bad made and found out how to distinguish between
‘the cases when it would fail or be effective® The

* result was the discovery of the conjugate point and 1t§.\'_\:
important significance, with the’ ingenious. method of-
determining it by means of the derivatives of the solutlons o
of Euler's equation with respect to- the consta.nts of
integration. SRR

The memoirs and treatises on the ca.lculus of varia-- :
tions up to the latter part of the’ nmkteenth century--;-'._-
frequently leave one in doubt as to\the validity of the R
methods and the precise character of the results whlch_'
they contain. Errors are not mfrequent eveh among the -
ablest writers, and vaguenes&m the statement and dis-
cussion of problems is edmmon. The feehng of urcer--
tainty concerning thése writings is mot a ‘modern, one

- only, based upon. the exacting requiirements of the loglc
of present-day \cmalysus, it was shared. repéatedly by
earlier writers.themselves, as the literature plainly shows.
Weierstrags, (1815-97) had very great influence in the
developfént of precise thinking in the theory of the cab "~
culu%of variations, as-in other lmportant domains_of
mathcmatlcs He formulated his problems ‘with great

.. (%are and found a new necessaty condition involving his -

’“functmn E(x ¥y, , yi'), be d;_st]_ngu_lshed clearly betweeh o
conditions which are necessary for a minimum- and those U
which are sufficient, and made for the first time a.suff- G

' diency proof with the aid of his very ingenious notion of R
a field; he gave his problems a much more comprehen*
sive geometrical setting by a.doptmg parametric represen-.

- . - - -.]. T

O
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tations for his curves with integrals to correspond. Un-
fortunately his ideas became known relatively slowly
because he gave them publicity only in his lectures, but
those mentioned above were already embodied in his
course on the calculus of variations of 1879 % '
~ The problem of finding shortest arcs on a surface,
which can be formulated as a problem of the calculus o8
variations of the type which we have been cons1der~mg
was elaborately studied by Darboux (1842-1917%™" his
Théorie des surfaces (1894). Of principal intdiost to us
here is the envelope theorem, special instalicés of which
had been known before, but which he fix8t proved for
this very general case. In 1894 and, 1898, respectively,
Zermelo and Kneser proved it for the most general prob-
lems of the type which we have been considering in the
plane ™

In the preceding pages We have seen two intercsting
contributions by Hilbert® One is his differentiability
conditien for a miniiili?ing arc; and the second is his
modification of J_Ke wufficiency proof of Weierstrass as a
result of his 111t‘r>1uct10n of the invariant integral 7*.%

No. account of the development of the calculus of
varutmn{ in” recent years could be complete without
mentign ‘el the inspiring influence which the treatises of
Beolzayand Hadamard have had upon contemporary
ptudents of the subject. Bolza in particular deduced an

\ Jngenious filth hecessary condition for a minimum,®
" and perfected the presentation of the theory in many

important respects. His books, written in most schol arly
fashion, have been the starting-point for numerous
researches,

In examining the historical sketch contained in the
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preceding paragraphs, the rcader should understand that
it records only those contributions which are related to
the very limited portion of the. theory of the calculus of
variations which has been presented in the preceding
pages. No mention has been made, for example, of O\
the existence theorem for a minimum which was proved
by Hilbert and which has becn extended in mteregth’lg
faghion both as to form and as to usefulness by Tbﬂe].h
or of the more complicated problems of the“caichlus of
variations studied by Clebsch and Ma,ym;\and many
others, The literature of the subjectus\very large. A
list of the treatises on the calculus ariations with a
few other references of intcrest)’\s’,lgiven on Tollowing
pages, and the reader may jeomsult the encyclopedia
" articles and the blbhogmphy f Lecat there mentioned
for more extenswe lists of Jtieinoirs.

W
NS
.



A LIST OF REFERENCES

In the following list dates of publication are indicated
in parentheses, and in Parts IT and ITI the order is chrorm-

. logical. With but few exceptiofis the titles are those o\

treatises. For the beginner the references in Party it

‘are the most important since they contain the modem

methods which have been developed by W01ef€tsrass and

later writers. -One might well introduce himgelf to the
calculus .of variations by reading the bnE{ introduction
to the theory in Goursat’s Cours dAnalyse, and aiter-
ward the fascinating books of Bolza and Hadamard.
The references in Part II provide’ for the more mature
reader a most interesting rcp,bj‘d’of the methods and the
historical development of: the earlier theories of. the cal-
cutus of variations.

i'“x\.

L BIBLI{}ER&PHIC‘ AL AND HISTORICAL
< REFERENCES

1. Kneser, Encyclopidie der maothematischen Wissenschaflen,
iTA ﬁf‘)ﬂf)) Zermelo und Hahn, bid.. IT A 8a (1904).

AN ecat Encyclopédie des sciences mathématigues, 1I 31
[*asmcu]el 1913; Fascicule 2, 1916).

.'\

-

\J 3. Lecat, Bibliographie du calcul des variations, depuis les

mg'mes Fusqu'd 1850 (1916); I1850-1913 (1913). See also the
additions in his Bibliographic des séries trigomoméirigues (1921),
p. 153; and in his Bibliographie de la relativité (1924), Appendix,
p- 15.

4, Todhunter, 4 History of the Progress of the Calculus 0,"
Variations during the Nineteenth Century (1861),

180
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II. TREATISES NOT CONTAINING THE THEORIES
OF WEIERSTRASS AND HIS SUCCESSORS

S. Ostwald’s Klassther der exaklen Wissenschoften, Nos. 46,
17. These contain the classical memeirs of John and James
Bernoulli (1696-97), Euler (1744), Lagrange (1762, 1770}, Legendre
(1786), Jacobi {(1837).

6. Woodhouse, 4 Treatise on Isoperimeirical Prab!ms am;’ ﬂ;e\
" Calewlus of Varictions (1810),

7. Dirksen, Analytische Darsteliung der Varsatsawgcknwsg
(1823).

8. Ohm, Die Lehre vom Grass:eﬂ und Klemstm‘{fSZS)

9. Abhatt, A Treatise on the Caloulus of Woriations (1837).

10. Jellett, An Elemeniary Treatise on t@ \Calculus of Voria-
Hons (1850},

11. Strauch, Theorie und Anmndang\dss sogenaniten Varia-
tionscaicud’s, Yals. I, 11, 2d ed, (1834)'

12. Stegmann, Lekrbuch der_ Rariotionsrechnung (1854).

13. Meigno-Lindeldf, Calamf des wariations (1861).

14. Dienger, Grundriss, de»‘ Vartationsrechnung (1867).

15. Todhunter, Reseurches in the Calewlus of Variations (1871)

16, Carll, A Trealise on the Caleulus of Varigtions (1881}

17. Pascal, Calbolp delle variagioni (1897) German Ed. (1899).

18. Byerly,\lzt\lmdudwn to the Caleulus of Varigtions (1917)

III il‘NREATISES CONTAINING THE THEORY OF
'\ JAVEIERSTRASS AND LATER WRITERS

G0 Kneser, Lokrbuch-der Vaoriationsrecknung (1900).
{\"20. Bolza, Lectures on the Caloulus of Variations (1904).
,f,"' 21, Hancock, Lectures on the Calculus of Varigtions (1904) .
O 22. Bolza, Vorlesungen diber Variationsrechnung {1909),
N/ - 93, Hadamard, Legons sur e calcul des variations (1910).
24, Goursat, Cosrs &’ Anclyse matkemisque Vol. IFE, 3d ed
(1923) chap. xxxiv, p. 545.
. 25. Tonelli, Fondamenti di calcolo delie variazions, Vol. 1 (1921)

Vol. I (1923), :
' 26. Vivantd, Elementi del ca.ica&’o delle variasioni (1923)

97, Weierstrass, Mathematische Werke, Vol. VII {1927). _
28. - Carathéodory, Variationsrecknung und partielle Differen-

tialgleichungen erster Ordnung (193 5).



NOTES

The numbers in parentheses refer to the preceding
list of references. \
¢\

1. Pages8, 9,174, Newton's problem, See his Principiz, Book-dl
Section VII, Scholium to Proposition xxxiv, Motte’s translation, p. 328,
For Bolza’s reconstruction of Newton'’s argumcnt see Bsb!wmew Mathe-
maiica, Vol. 13 (1913}, p. 146.

2. Pages 10, 175. John Bernoulli’s statement of the bm‘ohlstochmne
problem, See (5}, No. 46, p, 3.

3. Pages 11, 175. The solutions of the Bernouliish * See (5). No. 45,
- pp. 620, 9\

4, Pages 13, 174.  For Galileo’s remarkse bn “the brachistechrone
problem, see his Dialag dber dic beiden kaup!sdcﬁ?wktsess Weltsysteme {1630):
translation by Strauss, pp. 471-72; and h15~ Dislogues concerning Two
New Seiences (1638}, translation by Crew and De Salvie, p. 239.

5. Page20. The fundamental lemma See (24), p. 546,

6. Page 41, TJacobi’s memmroi' 1837. See {5), No. 47, p, 87.

7. Pages 48, 175,  Euler’s metnoir of 1744, bce {5}, No. 46, p. 54.

8. Page 56. Determination of constants for the brachistochrone
problem, See Bolza Bulletm of the American Mathematical Sociely, Voi. 10
{1903}, p. 185; E. H)afgore, hid. , b. 337,

9. Page 73. Barboux, Leqmu sur le théorie générale des surfaces,
Vol. 3 (1804), p 88 Zermelo, Unisrsuchungen sur Variationsrechinung,
Dissertation {1804), D- 96; Kneser, Mathemotische Annalen, Vo 0
(1898) p. 2T

P}ge 78. Lagrange’s first remarks on the brachistochrone
were fO( ke space problem. Sce (3}, No. 47, p. 11,
* 11 Page 78, Borda’s ctiticism, l{éﬁw;ms de PAcedémie dcs
:Saemes (1867}, p. 538.
\ * 12, Page 78 TLagrange's sccond trcatment of the brachistochronc
" problem, See’(3), No. 47, p. 36.
_ 13. Page 80. Barmett's geomettic construction for a focal poin:
Annals of Mathematics, Vol. 19 (1917), p. 57,

14. Page 80. Sinclair’s geometric construction for a focal point.
Annals of Mathematics, Vol. 8 (1907), p. 182.

15. Page88. Goldschmidt’s discontinuous solution. See (4), p, 340,
and (15}, p. 60 o

N
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7216. Page 89, MacNcish. Aunals of Maothematics, Vol. T (1905),
p. 72.

17. Page8%. Sinclair, Annals of Mathematics, Vol. 9 (1908), p. 151,

18. Page 94. Lindelaf's construction. Ses {13), pp. 209-10.

19. Page 94.- Generalization of Lindelsfs construction. Belza
Butletin of the Anicrican Mathematical Society, Vol. 18 {1911), p. 107.

20. Page 101 Hilbert's invariant integral. Gasingen Naldwm}dgn\

(1900, p. 291. N
21, Page 102. Lindeldf's envelope theorem for catemrges,' See
13), p. 213. :."’«.

. 22, Page 117. MacNeish’s criterion. See note 16. ,

23. Page 121. Sinclair’s soap-film problem. Seg n@\e 14
24, Page 130, For equation (3) of the text‘sée™N22), p. 30, and
D Boiz Raymond, Matkemaiische Aunalen, Vol \kS %1879), p. 313.

23, Page [43. Weierstrass-Erdmann cari:ﬁ\ condition, See (22),
p. 366. e\

26. Page 144. Hilbert’s d.lﬁerentlabﬂlty condltxon See (22), p. 30:

27, Page 147. Solutions of dlﬂerentlal equations. Bliss, Ba!ktm
at the dmerican Mathematical Stms{y, Wol. 25 (1918), p. 15.

28. Page 161. The case whcﬁ*endmomts are conjugate. Osgood.
Transactions of the American J athematical Society, Vol. 2 (1901}, p. 166.

29. Page 161. For this method of proving Jacobi's conditicn, in
the parametric case, see ﬁjm. Transactions of the American Mathematical

Saciety, Vol. 17 (1916), p. 195. ~
30. Page 171.\1h1p]icit functions. See Goursat-Hedrick, 4 Course

tn Anolysis, VeL, p. 45.
31. Pagé/lj?. The problem with two variable end-points. Bliss.
Matkem sche Annalen, Vol. 58 (1904), p. 70.
3 ges 175, 176, 177.. The memoirs of the Berooullis; Euler.
La&ng& Legendre, and ]’acubl have been collected in the reference
mbered (5).
\ ". 33. Page 178, The author is indebted to Professor O. Bolza for a
"\ Thost interesting handwritten record of Weierstrass’ leclures of 1879
\ ‘; N 34, Page 178. For references on the envelope theorem see note 9
35. Page 178. For these contributions of Hilbert see notes 20 and
2C above; also (22), pp. 106-9. .
36. Bage 178 Bolza’s fifth necessary condition, See (22). p. 117.
37. Page 70. Tonell (see No. 25 of the list of references, Vol. II,
p. 405) calls attention to the fact that the time of descent down an arc is
lessened if a segment of it having ends P, ¢ at the same level, and lying
elsewhere above that level, is replaced by the horizontal straight line
- PQ. This simplifies the discussion of ares having points in common with

the line y—a.



184 NOTES

38 Page 83. Dr. V. G. Grove suggests a much simpler construc-
tiop  Draw the line in Figure 23 joining the centers of curvature 7 and 8
of N and E. The line 2/ is perpendicular to 78. This foHlows readily
from formula {38) multiplicd by sin 8,/cos # which shows that the
tangents of the angles 72 and 287 are equal.

39. Page 135. The argument of this and the next page can be
stimpliied. “Mhe function +C ”\’
wlx)=ky (%, o, bo) iy, (=, 20, By} 4 }

%
PN

%

with .

R=vy(t, an, b))y L= =g, (a2 b))
has u{x}=0, ¥'(x)=0 on =z suﬁwently small Jntel’"i‘“@\ts{x{iﬁ“rt
sinee %'(w) = A", 1, 0, and #(z) 30 on me =x oy b account of the
condition IV’, The constants 2 and  can now b varied so slightly
that the last two properties uf #(x} are preserved Mt in such a way that
t(x} and «{x —e) have oppo«"ute signs. Then ﬁae function +{z, a} at the
top of page 136 has valx, 0) =u{x}==0 on LSk S since #(x)} vanishe-
once ouly, and that before 1, on the H"iLI’(a] ftom & — € to x+e, and

nowhere on mte s x,. “f*
“'s.. d
N &N
*
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Barnett, 80. 182 Dirksen, 181 . O\
Barrow, 1 Du Bois Reymond. 183 P N
Bern;)ulli, James, 10, 54, 175, 181, Envelope theorems: for ‘shoTtest
182 ] : distances, 32; for{ Brachisto-
Bernoulli, John, 10, 14, 42, 54, 175, chrones, 72; for catenaries, 87
181,182 _ 102, 124; lor more general cases.
Bliss, 183 131, 140, 1683 references, 183

Bolza, 9, 94, 178, 180, 181, 182, 183 Erfg:;ann’s cqruer condition, 143,

Borda, 78, 182 \} i
Brachistochrone problem, 9, 41- Euler, sﬁ;, 75-76, 181, 182; his
84, 182; descriptive summary of equation, 48, 130 .
results, 42-43; integral to be Egireifials: for shortest distances, °
minimized, 45; first necessary \ 22 for the brachistochrone prob-
conditiop, 47; extremals aresy® lem, 50; for minimum surfaces
cycloids, 50-34; construction 6% of revolution, 89; for more gener-
a ﬁegd, 55-62; auxiliary forhu? al cases, 131, 145
las, 62; the invariant integral,
65; sufficient conditigtis, for a FFmt’l >
minimum, 66; initial ‘elocity Fields of extremals: for shortest-
zero, 68; from & pointith a curve, distance problems, 27, 33; for
70; from a cuﬁ{\to"a point, 78 the brachistochrone problem, 57,
Bverly. 181 o 76; for minimum surfaces of
yery, O revolution, 31104’ 112,1124; 1%
wtenaries, §5; 89; i more general cases, 100, .
Catenarics, %5 89; family through 15, 5773, properties of feld

a point, 92, 95; envelope of the ;
famnilyy, 86, 07 through two . tunctions, 80, 106, 152, 156
ititsy 96 Focal points, 79, 124, 169; geo-
Hy, 3 . metric constructions, 79, 125
‘Cuvalicr. 1 Fundamental auxifiary formulas:
\ gﬁ_, ;][;n’”g far shortest-distance problems,
e lsE, . . 23; for the brachistochrone
Conjugate points: for catenaries, problem, 62; for more general
86,594, 103; in general, 131, 148, cases, 98, 136
16 Fundamental lemraa, 20, 182

Comer conditions: for brachisto-
" chrones, 30; for catenaries, 92; in Galileo, 13, 42, 174, 182
general, 143 General theory, 128-79; formuja-
Cycloids, 42, 52; through two tion of the problem, 128; funda-
points, 53 mental lemma, 20, 182; neces-
cary conditions for a minimum,
Darboux, 87, 178, 182 47,7130, 136, 138, 140, 143; the
. Descartes, 1 extremals, 145; fundamental
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auziliary formulas, 98, 136; the
envelope theorem, 131, 140; con-

. struction of a field, £34-57; syffi-
cient conditions for a minimum.
133, 157-59: descriptive sum-
mary of results, 130-36; regular
problems, 154, 160-61 .. analvtic
proof of Jacobi's condition, 161;
when one end-point is variable.
166; when both end-points are
variable, 172: histprical re-
remarks, 174 |

Goldschmidt, 88; his discontinyous
solution, 111, 116, 182

Goursat, 180, 181

Goursat-Hedrick, 183 -

Hadamard, 178, 180, 181

Hahn, 180 .

Harncock, 181

Hilbert’s differentiability condi-
tion, 144, 178, 183

Hilbert's . invariant integral: for
shortest-distance problems, 25;
for the brachistochrone problem
64; for minimum surfaees of
revolution, 108; for moze” seneral
problems, 100, 141, 1?‘!]3;\83

- Historical remarks, % N

I'Hospital, 11 \

Huygens, 53 .\ .

Isoperimetrij:’p\roblems. 15

-Ja.cobi,.dq,)'?, 177, 181, 182; his
necessgly condition: for short.
- estudistance problems, 32; for the
shrachistochrone prablem, 74; for
oNginimum  surfaces of revohi.
() ton, 87, 102, 124; for more
" general cases; 132, 140, 169; an
analytic proof, 161
Jellett, 181

Kneser, 87, 178, 180,-181, 182

. Lagrange, 78, 174, 181, 182
Lecat, 179, 180
Legendre, 131, 176, 181; his neces.
sary co_ndition. 138

-
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Leibniz, 2, 3

Fighe paths, 14

Lindelsf, 181, 183; his conjugate
point construction, 94, 102, 183

Maclaurin, 5

MacNeish, £9, 118, 182, 183
Maxima and minima, 3; criterial 4N
Mayer, 179 -
Moigno-Lindelsf, 181 >
Moaore, E, H., 182 N

Necessary conditiond Apr a mini-
mum:. for . shortest.distance
problems, 18337 for brachisto-
chrone probletns, 50-51; for

- mimum dves of revolution,
92, 103 A24; for more geueral
casesp 38, 130-31, 136, 143-45,

164,166, 173
Newton, 2, 3, 174; his resistance

wproblém, 8182
\Notes, 182

" Ohm, 131 -

'Osgood, 183 .
Ostwald’s Kiassiker, 182

Pascal, B,, 1
Pascal, E., 181

References, 180

Relative minima, 134; sufficient
conditions, 154 ‘

Riemann, 3

Roberval, 1

Schwarz, 43

Shortest distances, 17-40; ex-
tremals- are straight lines, 21;
sufficiency proofs, 21, 27, 33-34,
between two points, 17-30; {rom
a point to a curve, 30; from a
point 1o an ellipse, 34; between
twe curves, 38 :

Sinclair, 80, 89, 121, 126, 182, 183

Soap films, 7, 119, 126

Stegmann, 181

Strauch, 181 -
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for brachistochrone problems,
66, 75; for minimum surfzces of
revolution, 108, 112, 124; for
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154, 169 )

Surfaces of revolution of minimuym
area, 7, 85-127; descriptive sum-
mary of results, 85-89; necessary
conditions for a minimum, 89,
102, 124; sufficient -conditions
for a minimum, 109, 112, 115-19,
124; generated by straight lines,
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N
Y
. .:~
N\
N\
y '\'\.‘v’ '
N \
£ S
P Duudl
<
J
x:\’
'® M
\w
R\
..\:5{’

-

]

189

Todhunter, 180, 181
Tonelli, 179, 181

Transversality conditions:  for
shortest distances, 32; for the

- - brachistochrone problem, 72; for

minimum surfaces of revolution, <

123; for more general cases, 167\*
. ’ AN
Wallis, 1 N\
Welerstrass, 3, 132, 177, 183; his

sufficiency proofs, 27, 66, &8,

108, 124; his nege condi-
tion, 131, 138; his/gorner condi-
tion, 143, 183,

 Woodhousea I8N )

Zermeloy87,178, 189, 182
AV

PRINTED [N THE US4 N



	Page 1�
	Page 2�
	Page 3�
	Page 4�
	Page 5�
	Page 6�
	Page 7�
	Page 8�
	Page 9�
	Page 10�
	Page 11�
	Page 12�
	Page 13�
	Page 14�
	Page 15�
	Page 16�
	Page 17�
	Page 18�
	Page 19�
	Page 20�
	Page 21�
	Page 22�
	Page 23�
	Page 24�
	Page 25�
	Page 26�
	Page 27�
	Page 28�
	Page 29�
	Page 30�
	Page 31�
	Page 32�
	Page 33�
	Page 34�
	Page 35�
	Page 36�
	Page 37�
	Page 38�
	Page 39�
	Page 40�
	Page 41�
	Page 42�
	Page 43�
	Page 44�
	Page 45�
	Page 46�
	Page 47�
	Page 48�
	Page 49�
	Page 50�
	Page 51�
	Page 52�
	Page 53�
	Page 54�
	Page 55�
	Page 56�
	Page 57�
	Page 58�
	Page 59�
	Page 60�
	Page 61�
	Page 62�
	Page 63�
	Page 64�
	Page 65�
	Page 66�
	Page 67�
	Page 68�
	Page 69�
	Page 70�
	Page 71�
	Page 72�
	Page 73�
	Page 74�
	Page 75�
	Page 76�
	Page 77�
	Page 78�
	Page 79�
	Page 80�
	Page 81�
	Page 82�
	Page 83�
	Page 84�
	Page 85�
	Page 86�
	Page 87�
	Page 88�
	Page 89�
	Page 90�
	Page 91�
	Page 92�
	Page 93�
	Page 94�
	Page 95�
	Page 96�
	Page 97�
	Page 98�
	Page 99�
	Page 100�
	Page 101�
	Page 102�
	Page 103�
	Page 104�
	Page 105�
	Page 106�
	Page 107�
	Page 108�
	Page 109�
	Page 110�
	Page 111�
	Page 112�
	Page 113�
	Page 114�
	Page 115�
	Page 116�
	Page 117�
	Page 118�
	Page 119�
	Page 120�
	Page 121�
	Page 122�
	Page 123�
	Page 124�
	Page 125�
	Page 126�
	Page 127�
	Page 128�
	Page 129�
	Page 130�
	Page 131�
	Page 132�
	Page 133�
	Page 134�
	Page 135�
	Page 136�
	Page 137�
	Page 138�
	Page 139�
	Page 140�
	Page 141�
	Page 142�
	Page 143�
	Page 144�
	Page 145�
	Page 146�
	Page 147�
	Page 148�
	Page 149�
	Page 150�
	Page 151�
	Page 152�
	Page 153�
	Page 154�
	Page 155�
	Page 156�
	Page 157�
	Page 158�
	Page 159�
	Page 160�
	Page 161�
	Page 162�
	Page 163�
	Page 164�
	Page 165�
	Page 166�
	Page 167�
	Page 168�
	Page 169�
	Page 170�
	Page 171�
	Page 172�
	Page 173�
	Page 174�
	Page 175�
	Page 176�
	Page 177�
	Page 178�
	Page 179�
	Page 180�
	Page 181�
	Page 182�
	Page 183�
	Page 184�
	Page 185�
	Page 186�
	Page 187�
	Page 188�
	Page 189�
	Page 190�
	Page 191�
	Page 192�
	Page 193�
	Page 194�
	Page 195�
	Page 196�
	Page 197�
	Page 198�
	Page 199�
	Page 200�

